5 resultados para needleless electrospinning
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
A mat of electrospun cellulose fibers are deposed on transparent conductive oxide covered glass, and two such plates enclose a nematic liquid crystal. Thus two new types of Cellulose based Polymer Dispersed Liquid Crystal devices, based on hydroxypropylcellulose and Cellulose Acetate and the nematic liquid crystal E7 have been obtained. The current-voltage characteristics indicates ionic type conduction. Heating-cooling cycles have been applied on the samples and the activation energies have been determined. Simultaneously with the thermo-stimulated currents, the optical transmission dependence on the d.c. electric field and temperature was registered. ON-OFF switching times have been determined for different control voltages. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Helically twisted fibers can be produced by electrospinning liquid-crystalline cellulose solutions. Fiber topographies are studied by atomic force microscopy, scanning electron microscopy (see figure) and polarized optical microscopy. The fibers have a nearly universal pitch-to-diameter ratio and comprise both right- and left-handed helices.
Resumo:
The excellent properties of elastomers are exploited to trigger wrinkling instabilities in curved shells. Micro- and nano-fibres are produced by electrospinning and UV irradiated: each fibre consists of a soft core and a stiff outer half-shell. Upon solvent de-swelling, the fibres curl because the shell and the core have different natural lengths. Wrinkling only starts after the fibre has attained a well-defined helical shape. A simple analytical model is proposed to find the curling curvature and wrinkle wavelength, as well as the transition between the “curling” and “wrinkling” regimes. This new instability resembles that found in the tendrils of climbing plants as they dry and lignify.
Resumo:
Liquid crystalline cellulosic-based solutions described by distinctive properties are at the origin of different kinds of multifunctional materials with unique characteristics. These solutions can form chiral nematic phases at rest, with tuneable photonic behavior, and exhibit a complex behavior associated with the onset of a network of director field defects under shear. Techniques, such as Nuclear Magnetic Resonance (NMR), Rheology coupled with NMR (Rheo-NMR), rheology, optical methods, Magnetic Resonance Imaging (MRI), Wide Angle X-rays Scattering (WAXS), were extensively used to enlighten the liquid crystalline characteristics of these cellulosic solutions. Cellulosic films produced by shear casting and fibers by electrospinning, from these liquid crystalline solutions, have regained wider attention due to recognition of their innovative properties associated to their biocompatibility. Electrospun membranes composed by helical and spiral shape fibers allow the achievement of large surface areas, leading to the improvement of the performance of this kind of systems. The moisture response, light modulated, wettability and the capability of orienting protein and cellulose crystals, opened a wide range of new applications to the shear casted films. Characterization by NMR, X-rays, tensile tests, AFM, and optical methods allowed detailed characterization of those soft cellulosic materials. In this work, special attention will be given to recent developments, including, among others, a moisture driven cellulosic motor and electro-optical devices.
Resumo:
This work demonstrates the feasibility of using polymeric micro- and nanofiber-composed films and liquid crystals as electrically switchable scattering light shutters. We present a concept of electro-optic device based on an innovative combination of two mature technologies: optics of nematic liquid crystals and electrospinning of nanofibers. These devices have electric and optical characteristics far superior to other comparable methods. The simulation presented shows results that are highly consistent with those of experiments and that explain the working mechanism of the devices.