4 resultados para multitude
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm-nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and, (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M-1s−1 and ≥ 1.3 × 103 M-1s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly specific effects on gene regulation that depend on the cell type and on signals received from the cellular microenvironment.
Resumo:
Dissertação de Natureza Científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Edificações
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
Mycotoxins are an important group of naturally occurring substances known to contaminate a huge variety of agricultural products, feed and food commodities. The main concern is their widespread presence and toxic effects on humans and animals as they have been described as cytotoxic, nephrotoxic, hepatotoxic, teratogenic, immunosuppressive, mutagenic and/or carcinogenic. However, until now, risk assessments and regulations have usually been performed on individual mycotoxins despite humans and animals are being frequently exposed to a multitude of mycotoxins simultaneously. Moreover, even though some exposures through inhalation and dermal contact may potentially occur, only oral ingestion has been considered as the sole route of exposure in all the evaluations. However, more recent studies have also demonstrated airborne exposure to mycotoxins in different occupational settings with emphasis on agricultural professions. In these cases, skin contact with mold-infested substrates and inhalation of spore-borne toxins are the most important sources of exposure. Still, mycotoxins are not normally recongnize as na occupational hazard and exposure is different from the one ocurring by food intake. In this case, exposure is charaterized to be acute and simultaneous to other mycotoxins and also to fungi and dust. All these features increase the challenge implicated in the risk assessment process. Some topics will be presented and discussed in detailed such as: What occupational settings should be consider in this case; possible exposure routes; exposure characterization; how to assess exposure; co-exposure; aggregate exposure and cumulative risk assessment.