6 resultados para multi-quantum-well
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
In the last decades considerations about equipments' availability became an important issue, as well as its dependence on components characteristics such as reliability and maintainability. This is particularly of outstanding importance if one is dealing with high risk industrial equipments, where these factors play an important and fundamental role in risk management when safety or huge economic values are in discussion. As availability is a function of reliability, maintainability, and maintenance support activities, the main goal is to improve one or more of these factors. This paper intends to show how maintainability can influence availability and present a methodology to select the most important attributes for maintainability using a partial Multi Criteria Decision Making (pMCDM). Improvements in maintainability can be analyzed assuming it as a probability related with a restore probability density function [g(t)].
Resumo:
We write down the renormalization-group equations for the Yukawa-coupling matrices in a general multi-Higgs-doublet model. We then assume that the matrices of the Yukawa couplings of the various Higgs doublets to right-handed fermions of fixed quantum numbers are all proportional to each other. We demonstrate that, in the case of the two-Higgs-doublet model, this proportionality is preserved by the renormalization-group running only in the cases of the standard type-I, II, X, and Y models. We furthermore show that a similar result holds even when there are more than two Higgs doublets: the Yukawa-coupling matrices to fermions of a given electric charge remain proportional under the renormalization-group running if and only if there is a basis for the Higgs doublets in which all the fermions of a given electric charge couple to only one Higgs doublet.
Resumo:
In the last years it has become increasingly clear that the mammalian transcriptome is highly complex and includes a large number of small non-coding RNAs (sncRNAs) and long noncoding RNAs (lncRNAs). Here we review the biogenesis pathways of the three classes of sncRNAs, namely short interfering RNAs (siRNAs), microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs). These ncRNAs have been extensively studied and are involved in pathways leading to specific gene silencing and the protection of genomes against virus and transposons, for example. Also, lncRNAs have emerged as pivotal molecules for the transcriptional and post-transcriptional regulation of gene expression which is supported by their tissue-specific expression patterns, subcellular distribution, and developmental regulation. Therefore, we also focus our attention on their role in differentiation and development. SncRNAs and lncRNAs play critical roles in defining DNA methylation patterns, as well as chromatin remodeling thus having a substantial effect in epigenetics. The identification of some overlaps in their biogenesis pathways and functional roles raises the hypothesis that these molecules play concerted functions in vivo, creating complex regulatory networks where cooperation with regulatory proteins is necessary. We also highlighted the implications of biogenesis and gene expression deregulation of sncRNAs and lncRNAs in human diseases like cancer.
Resumo:
The three-dimensional (3D) exact solutions developed in the early 1970s by Pagano for simply supported multilayered orthotropic composite plates and later in the 1990s extended to piezoelectric plates by Heyliger have been extremely useful in the assessment and development of advanced laminated plate theories and related finite element models. In fact, the well-known test cases provided by Pagano and by Heyliger in those earlier works are still used today as benchmark solutions. However, the limited number of test cases whose 3D exact solutions have been published has somewhat restricted the assessment of recent advanced models to the same few test cases. This work aims to provide additional test cases to serve as benchmark exact solutions for the static analysis of multilayered piezoelectric composite plates. The method introduced by Heyliger to derive the 3D exact solutions has been successfully implemented using symbolic computing and a number of new test cases are here presented thoroughly. Specifically, two multilayered plates using PVDF piezoelectric material are selected as test cases under two different loading conditions and considering three plate aspect ratios for thick, moderately thick and thin plate, in a total of 12 distinct test cases. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Session 7: Playing with Roles, images and improvising New States of Awareness, 3rd Global Conference, 1st November – 3rd November, 2014, Prague, Czech Republic.
Resumo:
This paper proposes an implementation, based on a multi-agent system, of a management system for automated negotiation of electricity allocation for charging electric vehicles (EVs) and simulates its performance. The widespread existence of charging infrastructures capable of autonomous operation is recognised as a major driver towards the mass adoption of EVs by mobility consumers. Eventually, conflicting requirements from both power grid and EV owners require automated middleman aggregator agents to intermediate all operations, for example, bidding and negotiation, between these parts. Multi-agent systems are designed to provide distributed, modular, coordinated and collaborative management systems; therefore, they seem suitable to address the management of such complex charging infrastructures. Our solution consists in the implementation of virtual agents to be integrated into the management software of a charging infrastructure. We start by modelling the multi-agent architecture using a federated, hierarchical layers setup and as well as the agents' behaviours and interactions. Each of these layers comprises several components, for example, data bases, decision-making and auction mechanisms. The implementation of multi-agent platform and auctions rules, and of models for battery dynamics, is also addressed. Four scenarios were predefined to assess the management system performance under real usage conditions, considering different types of profiles for EVs owners', different infrastructure configurations and usage and different loads on the utility grid (where real data from the concession holder of the Portuguese electricity transmission grid is used). Simulations carried with the four scenarios validate the performance of the modelled system while complying with all the requirements. Although all of these have been performed for one charging station alone, a multi-agent design may in the future be used for the higher level problem of distributing energy among charging stations. Copyright (c) 2014 John Wiley & Sons, Ltd.