1 resultado para minimum tillage
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Filtro por publicador
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Aquatic Commons (5)
- Archive of European Integration (35)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (5)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (38)
- Boston University Digital Common (2)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (52)
- CentAUR: Central Archive University of Reading - UK (60)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (21)
- Cochin University of Science & Technology (CUSAT), India (5)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (4)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (1)
- Digital Repository at Iowa State University (6)
- DigitalCommons@The Texas Medical Center (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (26)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (4)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (53)
- Infoteca EMBRAPA (1)
- Institute of Public Health in Ireland, Ireland (3)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (2)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Leiria (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Publishing Network for Geoscientific & Environmental Data (51)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (22)
- Queensland University of Technology - ePrints Archive (56)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (9)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositorio Institucional de la Universidad Nacional Agraria (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (162)
- Repositorio Institucional Universidad de Medellín (2)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (3)
- Scielo España (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (41)
- Universidade Complutense de Madrid (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (14)
- University of Connecticut - USA (1)
- University of Michigan (121)
- University of Queensland eSpace - Australia (17)
- University of Southampton, United Kingdom (1)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Research on cluster analysis for categorical data continues to develop, new clustering algorithms being proposed. However, in this context, the determination of the number of clusters is rarely addressed. We propose a new approach in which clustering and the estimation of the number of clusters is done simultaneously for categorical data. We assume that the data originate from a finite mixture of multinomial distributions and use a minimum message length criterion (MML) to select the number of clusters (Wallace and Bolton, 1986). For this purpose, we implement an EM-type algorithm (Silvestre et al., 2008) based on the (Figueiredo and Jain, 2002) approach. The novelty of the approach rests on the integration of the model estimation and selection of the number of clusters in a single algorithm, rather than selecting this number based on a set of pre-estimated candidate models. The performance of our approach is compared with the use of Bayesian Information Criterion (BIC) (Schwarz, 1978) and Integrated Completed Likelihood (ICL) (Biernacki et al., 2000) using synthetic data. The obtained results illustrate the capacity of the proposed algorithm to attain the true number of cluster while outperforming BIC and ICL since it is faster, which is especially relevant when dealing with large data sets.