2 resultados para mini clinical evaluation exercise
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The amount of fat is a component that complicates the clinical evaluation and the differential diagnostic between benign and malign lesions in the breast MRI examinations. To overcome this problem, an effective erasing of the fat signal over the images acquisition process, is essentials. This study aims to compare three fat suppression techniques (STIR, SPIR, SPAIR) in the MR images of the breast and to evaluate the best image quality regarding its clinical usefulness. To mimic breast women, a breast phantom was constructed. First the exterior contour and, in second time, its content which was selected based on 7 samples with different components. Finally it was undergone to a MRI breast protocol with the three different fat saturation techniques. The examinations were performed on a 1.5 T MRI system (Philips®). A group of 5 experts evaluated 9 sequences, 3 of each with fat suppression techniques, in which the frequency offset and TI (Inversion Time) were the variables changed. This qualitative image analysis was performed according 4 parameters (saturation uniformity, saturation efficacy, detail of the anatomical structures and differentiation between the fibroglandular and adipose tissue), using a five-point Likert scale. The statistics analysis showed that anyone of the fat suppression techniques demonstrated significant differences compared to the others with (p > 0.05) and regarding each parameter independently. By Fleiss’ kappa coefficient there was a good agreement among observers P(e) = 0.68. When comparing STIR, SPIR and SPAIR techniques it was confirmed that all of them have advantages in the study of the breast MRI. For the studied parameters, the results through the Friedman Test showed that there are similar advantages applying anyone of these techniques.
Resumo:
Purpose - The study evaluates the pre- and post-training lesion localisation ability of a group of novice observers. Parallels are drawn with the performance of inexperienced radiographers taking part in preliminary clinical evaluation (PCE) and ‘red-dot’ systems, operating within radiography practice. Materials and methods - Thirty-four novice observers searched 92 images for simulated lesions. Pre-training and post-training evaluations were completed following the free-response the receiver operating characteristic (FROC) method. Training consisted of observer performance methodology, the characteristics of the simulated lesions and information on lesion frequency. Jackknife alternative FROC (JAFROC) and highest rating inferred ROC analyses were performed to evaluate performance difference on lesion-based and case-based decisions. The significance level of the test was set at 0.05 to control the probability of Type I error. Results - JAFROC analysis (F(3,33) = 26.34, p < 0.0001) and highest-rating inferred ROC analysis (F(3,33) = 10.65, p = 0.0026) revealed a statistically significant difference in lesion detection performance. The JAFROC figure-of-merit was 0.563 (95% CI 0.512,0.614) pre-training and 0.677 (95% CI 0.639,0.715) post-training. Highest rating inferred ROC figure-of-merit was 0.728 (95% CI 0.701,0.755) pre-training and 0.772 (95% CI 0.750,0.793) post-training. Conclusions - This study has demonstrated that novice observer performance can improve significantly. This study design may have relevance in the assessment of inexperienced radiographers taking part in PCE or commenting scheme for trauma.