6 resultados para meat hydrolysates
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The impact of mycotoxins on human and animal health is well recognized. Aflatoxin B1 (AFB1) is by far the most prevalent and the most potent natural carcinogen and is usually the major aflatoxin produced by toxigenic fungal strains. Data available, points to an increasing frequency of poultry feed contamination by aflatoxins. Since aflatoxin residues may accumulate in body tissues, this represents a high risk to human health. Samples from commercial poultry birds have already presented detectable levels of aflatoxin in liver. A descriptive study was developed in order to assess fungal contamination by species from Aspergillus flavus complex in seven Portuguese poultry units. Air fungal contamination was studied by conventional and molecular methods. Air, litter and surfaces samples were collected. To apply molecular methods, air samples of 300L were collected using the Coriolis μ air sampler (Bertin Technologies), at 300 L/min airflow rate. For conventional methodologies, all the collected samples were incubated at 27ºC for five to seven days. Through conventional methods, Aspergillus flavus was the third fungal species (7%) most frequently found in 27 indoor air samples analysed and the most commonly isolated species (75%) in air samples containing only the Aspergillus genus...
Resumo:
Feed production, swine and slaughterhouses were already reported as occupational environments with high fungal contamination. This condition can ultimately lead to the development of several health conditions. This study aimed to characterize the occupational exposure to fungal burden in three different settings: swine feed unit, swine units and slaughterhouse.
Resumo:
Cooking was found to be a main source of submicrometer and ultrafine aerosols from gas combustion in stoves. Therefore, this study consisted of the determination of the alveolar deposited surface area due to aerosols resulting from common domestic cooking activities (boiling fish, vegetables, or pasta, and frying hamburgers and eggs). The concentration of ultrafine particles during the cooking events significantly increased from a baseline of 42.7 μm2/cm3 (increased to 72.9 μm2/cm3 due to gas burning) to a maximum of 890.3 μm2/cm3 measured during fish boiling in water, and a maximum of 4500 μm2/cm3 during meat frying. This clearly shows that a domestic activity such as cooking can lead to exposures as high as those of occupational exposure activities.
Resumo:
Although numerous studies have been conducted on microbial contaminants associated with various stages related to poultry and meat products processing, only a few reported on fungal contamination of poultry litter. The goals of this study were to (1) characterize litter fungal contamination and (2) report the incidence of keratinophilic and toxigenic fungi presence. Seven fresh and 14 aged litter samples were collected from 7 poultry farms. In addition, 27 air samples of 25 litters were also collected through impaction method, and after laboratory processing and incubation of collected samples, quantitative colony-forming units (CFU/m3) and qualitative results were obtained. Twelve different fungal species were detected in fresh litter and Penicillium was the most frequent genus found (59.9%), followed by Alternaria (17.8%), Cladosporium (7.1%), and Aspergillus (5.7%). With respect to aged litter, 19 different fungal species were detected, with Penicillium sp. the most frequently isolated (42.3%), followed by Scopulariopsis sp. (38.3%), Trichosporon sp. (8.8%), and Aspergillus sp. (5.5%). A significant positive correlation was found between litter fungal contamination (CFU/g) and air fungal contamination (CFU/m3). Litter fungal quantification and species identification have important implications in the evaluation of potential adverse health risks to exposed workers and animals. Spreading of poultry litter in agricultural fields is a potential public health concern, since keratinophilic (Scopulariopsis and Fusarium genus) as well as toxigenic fungi (Aspergillus, Fusarium, and Penicillium genus) were isolated.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Cooking was found to be a main source of submicrometer and ultrafine aerosols from gas combustion in stoves. Therefore, this study consisted of the determination of the alveolar deposited surface area due to aerosols resulting from common domestic cooking activities (boiling fish, vegetables, or pasta, and frying hamburgers and eggs). The concentration of ultrafine particles during the cooking events significantly increased from a baseline of 42.7 mu m(2)/cm(3) (increased to 72.9 mu m(2)/cm(3) due to gas burning) to a maximum of 890.3 mu m(2)/cm(3) measured during fish boiling in water, and a maximum of 4500 mu m(2)/cm(3) during meat frying. This clearly shows that a domestic activity such as cooking can lead to exposures as high as those of occupational exposure activities.