8 resultados para mathematical existence

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modelling of the experimental data of the extraction of the volatile oil from six aromatic plants (coriander, fennel, savoury, winter savoury, cotton lavender and thyme) was performed using five mathematical models, based on differential mass balances. In all cases the extraction was internal diffusion controlled and the internal mass transfer coefficienty (k(s)) have been found to change with pressure, temperature and particle size. For fennel, savoury and cotton lavender, the external mass transfer and the equilibrium phase also influenced the second extraction period, since k(s) changed with the tested flow rates. In general, the axial dispersion coefficient could be neglected for the conditions studied, since Peclet numbers were high. On the other hand, the solute-matrix interaction had to be considered in order to ensure a satisfactory description of the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of entrapped air in pressurized hydraulic systems is considered a critical condition for the infrastructure security, due to the transient pressure enhancement related with its dynamic behaviour, similar to non-linear spring action. A mathematical model for the assessment of hydraulic transients resulting from rapid pressurizations, under referred condition is presented. Water movement was modeled through the elastic column theory considering a moving liquid boundary and the entrapped air pocket as lumped gas mass, where the acoustic effects are negligible. The method of characteristics was used to obtain the numerical solution of the liquid flow. The resulting model is applied to an experimental set-up having entrapped air in the top of a vertical pipe section and the numerical results are analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we examine the construction of first entities in narratives produced by children of 5, 7, 10 years and adults1 . The study demonstrates that when children reformulate they try to construct entities detached from the situation of enunciation, which means that they construct a detached or a translated plane and they construct linguistic existence of entities. Entities must first be introduced into the enunciative space and then comments will be made in subsequent utterances. Constructing existence supposes extraction. This consists of “singling out an occurrence, that is, isolating and drawing its spatiotemporal boundaries” (Culioli, 1990, p. 182) . Once the occurrence of the notion is constructed (which means it has become a separate occurrence with situational properties), children can predicate about it. However, there are children who do not construct the linguistic existence of entities. I hypothesize that the mode of task presentation influences the success of constructing linguistic existence. Sharing the investigator’s knowledge about the stimulus images, children do not ascribe an existential status to the occurrence of the notional domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new dynamical approach to the Blumberg's equation, a family of unimodal maps. These maps are proportional to Beta(p, q) probability densities functions. Using the symmetry of the Beta(p, q) distribution and symbolic dynamics techniques, a new concept of mirror symmetry is defined for this family of maps. The kneading theory is used to analyze the effect of such symmetry in the presented models. The main result proves that two mirror symmetric unimodal maps have the same topological entropy. Different population dynamics regimes are identified, when the intrinsic growth rate is modified: extinctions, stabilities, bifurcations, chaos and Allee effect. To illustrate our results, we present a numerical analysis, where are demonstrated: monotonicity of the topological entropy with the variation of the intrinsic growth rate, existence of isentropic sets in the parameters space and mirror symmetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we define and investigate generalized Richards' growth models with strong and weak Allee effects and no Allee effect. We prove the transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, depending on the implicit conditions, which involve the several parameters considered in the models. New classes of functions describing the existence or not of Allee effect are introduced, a new dynamical approach to Richards' populational growth equation is established. These families of generalized Richards' functions are proportional to the right hand side of the generalized Richards' growth models proposed. Subclasses of strong and weak Allee functions and functions with no Allee effect are characterized. The study of their bifurcation structure is presented in detail, this analysis is done based on the configurations of bifurcation curves and symbolic dynamics techniques. Generically, the dynamics of these functions are classified in the following types: extinction, semi-stability, stability, period doubling, chaos, chaotic semistability and essential extinction. We obtain conditions on the parameter plane for the existence of a weak Allee effect region related to the appearance of cusp points. To support our results, we present fold and flip bifurcations curves and numerical simulations of several bifurcation diagrams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este artigo discute o papel da valorização das interações sociais entre os alunos e o professor no desenvolvimento de modos de comunicação e de padrões de interação centrados nos conhecimentos matemáticos individuais dos alunos. Os dados foram recolhidos por mim, em contexto de trabalho colaborativo, com três professoras do 1.º ciclo do ensino básico, assumindo uma perspetiva interpretativa da ação e significação das professoras das conceções e práticas de comunicação matemática na sala de aula. O desenvolvimento das interações entre os próprios alunos e entre estes e as professoras, juntamente com o reconhecimento da singularidade dos conhecimentos matemáticos dos alunos, favoreceram a existência dos modos de comunicação reflexiva e instrutiva e dos padrões de extração e de discussão na comunicação matemática na sala de aula, gerando um sentido de responsabilidade coletiva sobre a aprendizagem da matemática e no reconhecimento do conhecimento do outro (aluno e professor).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agências Financiadoras: FCT e MIUR

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work concerns dynamics and bifurcations properties of a new class of continuous-defined one-dimensional maps: Tsoularis-Wallace's functions. This family of functions naturally incorporates a major focus of ecological research: the Allee effect. We provide a necessary condition for the occurrence of this phenomenon of extinction. To establish this result we introduce the notions of Allee's functions, Allee's effect region and Allee's bifurcation curve. Another central point of our investigation is the study of bifurcation structures for this class of functions, in a three-dimensional parameter space. We verified that under some sufficient conditions, Tsoularis-Wallace's functions have particular bifurcation structures: the big bang and the double big bang bifurcations of the so-called "box-within-a-box" type. The double big bang bifurcations are related to the existence of flip codimension-2 points. Moreover, it is verified that these bifurcation cascades converge to different big bang bifurcation curves, where for the corresponding parameter values are associated distinct kinds of boxes. This work contributes to clarify the big bang bifurcation analysis for continuous maps and understand their relationship with explosion birth and extinction phenomena.