3 resultados para low-resolution NMR
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Coastal low-level jets (CLLJ) are a low-tropospheric wind feature driven by the pressure gradient produced by a sharp contrast between high temperatures over land and lower temperatures over the sea. This contrast between the cold ocean and the warm land in the summer is intensified by the impact of the coastal parallel winds on the ocean generating upwelling currents, sharpening the temperature gradient close to the coast and giving rise to strong baroclinic structures at the coast. During summertime, the Iberian Peninsula is often under the effect of the Azores High and of a thermal low pressure system inland, leading to a seasonal wind, in the west coast, called the Nortada (northerly wind). This study presents a regional climatology of the CLLJ off the west coast of the Iberian Peninsula, based on a 9km resolution downscaling dataset, produced using the Weather Research and Forecasting (WRF) mesoscale model, forced by 19 years of ERA-Interim reanalysis (1989-2007). The simulation results show that the jet hourly frequency of occurrence in the summer is above 30% and decreases to about 10% during spring and autumn. The monthly frequencies of occurrence can reach higher values, around 40% in summer months, and reveal large inter-annual variability in all three seasons. In the summer, at a daily base, the CLLJ is present in almost 70% of the days. The CLLJ wind direction is mostly from north-northeasterly and occurs more persistently in three areas where the interaction of the jet flow with local capes and headlands is more pronounced. The coastal jets in this area occur at heights between 300 and 400 m, and its speed has a mean around 15 m/s, reaching maximum speeds of 25 m/s.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica
Resumo:
Background - Image blurring in Full Field Digital Mammography (FFDM) is reported to be a problem within many UK breast screening units resulting in significant proportion of technical repeats/recalls. Our study investigates monitors of differing pixel resolution, and whether there is a difference in blurring detection between a 2.3 MP technical review monitor and a 5MP standard reporting monitor. Methods - Simulation software was created to induce different magnitudes of blur on 20 artifact free FFDM screening images. 120 blurred and non-blurred images were randomized and displayed on the 2.3 and 5MP monitors; they were reviewed by 28 trained observers. Monitors were calibrated to the DICOM Grayscale Standard Display Function. T-test was used to determine whether significant differences exist in blurring detection between the monitors. Results - The blurring detection rate on the 2.3MP monitor for 0.2, 0.4, 0.6, 0.8 and 1 mm blur was 46, 59, 66, 77and 78% respectively; and on the 5MP monitor 44, 70, 83 , 96 and 98%. All the non-motion images were identified correctly. A statistical difference (p <0.01) in the blurring detection rate between the two monitors was demonstrated. Conclusions - Given the results of this study and knowing that monitors as low as 1 MP are used in clinical practice, we speculate that technical recall/repeat rates because of blurring could be reduced if higher resolution monitors are used for technical review at the time of imaging. Further work is needed to determine monitor minimum specification for visual blurring detection.