4 resultados para low-contrast

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mammography equipment must be evaluated to ensure that images will be of acceptable diagnostic quality with lowest radiation dose. Quality Assurance (QA) aims to provide systematic and constant improvement through a feedback mechanism to address the technical, clinical and training aspects. Quality Control (QC), in relation to mammography equipment, comprises a series of tests to determine equipment performance characteristics. The introduction of digital technologies promoted changes in QC tests and protocols and there are some tests that are specific for each manufacturer. Within each country specifi c QC tests should be compliant with regulatory requirements and guidance. Ideally, one mammography practitioner should take overarching responsibility for QC within a service, with all practitioners having responsibility for actual QC testing. All QC results must be documented to facilitate troubleshooting, internal audit and external assessment. Generally speaking, the practitioner’s role includes performing, interpreting and recording the QC tests as well as reporting any out of action limits to their service lead. They must undertake additional continuous professional development to maintain their QC competencies. They are usually supported by technicians and medical physicists; in some countries the latter are mandatory. Technicians and/or medical physicists often perform many of the tests indicated within this chapter. It is important to recognise that this chapter is an attempt to encompass the main tests performed within European countries. Specific tests related to the service that you work within must be familiarised with and adhered too.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mammography is one of the most technically demanding examinations in radiology, and it requires X-ray technology designed specifi cally for the task. The pathology to be imaged ranges from small (20–100 μm) high density microcalcifications to ill-defi ned low contrast masses. These must be imaged against a background of mixed densities. This makes demonstrating pathology challenging. Because of its use in asymptomatic screening, mammography must also employ as low a radiation dose as possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coastal low-level jets (CLLJ) are a low-tropospheric wind feature driven by the pressure gradient produced by a sharp contrast between high temperatures over land and lower temperatures over the sea. This contrast between the cold ocean and the warm land in the summer is intensified by the impact of the coastal parallel winds on the ocean generating upwelling currents, sharpening the temperature gradient close to the coast and giving rise to strong baroclinic structures at the coast. During summertime, the Iberian Peninsula is often under the effect of the Azores High and of a thermal low pressure system inland, leading to a seasonal wind, in the west coast, called the Nortada (northerly wind). This study presents a regional climatology of the CLLJ off the west coast of the Iberian Peninsula, based on a 9km resolution downscaling dataset, produced using the Weather Research and Forecasting (WRF) mesoscale model, forced by 19 years of ERA-Interim reanalysis (1989-2007). The simulation results show that the jet hourly frequency of occurrence in the summer is above 30% and decreases to about 10% during spring and autumn. The monthly frequencies of occurrence can reach higher values, around 40% in summer months, and reveal large inter-annual variability in all three seasons. In the summer, at a daily base, the CLLJ is present in almost 70% of the days. The CLLJ wind direction is mostly from north-northeasterly and occurs more persistently in three areas where the interaction of the jet flow with local capes and headlands is more pronounced. The coastal jets in this area occur at heights between 300 and 400 m, and its speed has a mean around 15 m/s, reaching maximum speeds of 25 m/s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate if physical measures of noise predict image quality at high and low noise levels. Method: Twenty-four images were acquired on a DR system using a Pehamed DIGRAD phantom at three kVp settings (60, 70 and 81) across a range of mAs values. The image acquisition setup consisted of 14 cm of PMMA slabs with the phantom placed in the middle at 120 cm SID. Signal-to-noise ratio (SNR) and Contrast-tonoise ratio (CNR) were calculated for each of the images using ImageJ software and 14 observers performed image scoring. Images were scored according to the observer`s evaluation of objects visualized within the phantom. Results: The R2 values of the non-linear relationship between objective visibility score and CNR (60kVp R2 = 0.902; 70Kvp R2 = 0.913; 80kVp R2 = 0.757) demonstrate a better fit for all 3 kVp settings than the linear R2 values. As CNR increases for all kVp settings the Object Visibility also increases. The largest increase for SNR at low exposure values (up to 2 mGy) is observed at 60kVp, when compared with 70 or 81kVp.CNR response to exposure is similar. Pearson r was calculated to assess the correlation between Score, OV, SNR and CNR. None of the correlations reached a level of statistical significance (p>0.01). Conclusion: For object visibility and SNR, tube potential variations may play a role in object visibility. Higher energy X-ray beam settings give lower SNR but higher object visibility. Object visibility and CNR at all three tube potentials are similar, resulting in a strong positive relationship between CNR and object visibility score. At low doses the impact of radiographic noise does not have a strong influence on object visibility scores because in noisy images objects could still be identified.