6 resultados para laser beam beyond the diffraction limits
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The surface morphology, structure and composition of human dentin treated with a femtosecond infrared laser (pulse duration 500 fs, wavelength 1030 nm, fluences ranging from 1 to 3 J cm(-2)) was studied by scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The average dentin ablation threshold under these conditions was 0.6 +/- 0.2 J cm(-2) and the ablation rate achieved in the range 1 to 2 mu m/pulse for an average fluence of 3 J cm(-2). The ablation surfaces present an irregular and rugged appearance, with no significant traces of melting, deformation, cracking or carbonization. The smear layer was entirely removed by the laser treatment. For fluences only slightly higher than the ablation threshold the morphology of the laser-treated surfaces was very similar to the dentin fracture surfaces and the dentinal tubules remained open. For higher fluences, the surface was more porous and the dentin structure was partially concealed by ablation debris and a few resolidified droplets. Independently on the laser processing parameters and laser processing method used no sub-superficial cracking was observed. The dentin constitution and chemical composition was not significantly modified by the laser treatment in the processing parameter range used. In particular, the organic matter is not preferentially removed from the surface and no traces of high temperature phosphates, such as the beta-tricalcium phosphate, were observed. The achieved results are compatible with an electrostatic ablation mechanism. In conclusion, the high beam quality and short pulse duration of the ultrafast laser used should allow the accurate preparation of cavities, with negligible damage of the underlying material.
Resumo:
Conventional film based X-ray imaging systems are being replaced by their digital equivalents. Different approaches are being followed by considering direct or indirect conversion, with the later technique dominating. The typical, indirect conversion, X-ray panel detector uses a phosphor for X-ray conversion coupled to a large area array of amorphous silicon based optical sensors and a couple of switching thin film transistors (TFT). The pixel information can then be readout by switching the correspondent line and column transistors, routing the signal to an external amplifier. In this work we follow an alternative approach, where the electrical switching performed by the TFT is replaced by optical scanning using a low power laser beam and a sensing/switching PINPIN structure, thus resulting in a simpler device. The optically active device is a PINPIN array, sharing both front and back electrical contacts, deposited over a glass substrate. During X-ray exposure, each sensing side photodiode collects photons generated by the scintillator screen (560 nm), charging its internal capacitance. Subsequently a laser beam (445 nm) scans the switching diodes (back side) retrieving the stored charge in a sequential way, reconstructing the image. In this paper we present recent work on the optoelectronic characterization of the PINPIN structure to be incorporated in the X-ray image sensor. The results from the optoelectronic characterization of the device and the dependence on scanning beam parameters are presented and discussed. Preliminary results of line scans are also presented. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
An optimized ZnO:Al/a-pin SixCl1-x:H/Al configuration for the laser scanned photodiode (LSP) imaging detector is proposed. The LSP utilizes light induced depletion layers as detector and a laser beam for readout. The effect of the sensing element structure, cell configuration and light source flux are investigated and correlated with the sensor output characteristics. Experimental data reveal that the large optical gap and the low conductivity of the doped a-SixC1-x:H layers are responsible by an induced inversion layer at the illuminated interfaces which blocks the carrier collection. These insulator-like layers act as MIS gates preventing image smearing. The physical background of the LSP is discussed.
Resumo:
We use a simple model of associating fluids which consists of spherical particles having a hard-core repulsion, complemented by three short-ranged attractive sites on the surface (sticky spots). Two of the spots are of type A and one is of type B; the bonding interactions between each pair of spots have strengths epsilon(AA), epsilon(BB), and epsilon(AB). The theory is applied over the whole range of bonding strengths and the results are interpreted in terms of the equilibrium cluster structures of the phases. In addition to our numerical results, we derive asymptotic expansions for the free energy in the limits for which there is no liquid-vapor critical point: linear chains (epsilon(AA)not equal 0, epsilon(AB)=epsilon(BB)=0), hyperbranched polymers (epsilon(AB)not equal 0, epsilon(AA)=epsilon(BB)=0), and dimers (epsilon(BB)not equal 0, epsilon(AA)=epsilon(AB)=0). These expansions also allow us to calculate the structure of the critical fluid by perturbing around the above limits, yielding three different types of condensation: of linear chains (AA clusters connected by a few AB or BB bonds); of hyperbranched polymers (AB clusters connected by AA bonds); or of dimers (BB clusters connected by AA bonds). Interestingly, there is no critical point when epsilon(AA) vanishes despite the fact that AA bonds alone cannot drive condensation.
Resumo:
We report on a simple method to obtain surface gratings using a Michelson interferometer and femtosecond laser radiation. In the optical setup used, two parallel laser beams are generated using a beam splitter and then focused using the same focusing lens. An interference pattern is created in the focal plane of the focusing lens, which can be used to pattern the surface of materials. The main advantage of this method is that the optical paths difference of the interfering beams is independent of the distance between the beams. As a result, the fringes period can be varied without a need for major realignment of the optical system and the time coincidence between the interfering beams can be easily monitored. The potential of the method was demonstrated by patterning surface gratings with different periods on titanium surfaces in air.
Resumo:
The aim of the present work was to study the morphology and structure of the nanoparticles produced by femtosecond laser ablation of fused silica. Ultrashort laser pulses of 1030 nm wavelength and 550 fs duration were tightly focused by a high numerical aperture microscope objective at the surface of fused silica samples while scanning the sample in relation to the stationary laser beam. Laser tracks were created with pulse energies in the range 5-100 mu J, resulting in ablation debris of different morphologies. The debris were examined by scanning and transmission electron microscopy for their morphology and crystal structure in relation to the incident laser pulse energy. Ejected particles with sizes ranging from a few nanometers to a few microns were found. Their morphologies can be broadly classified into three categories: very fine round nanoparticles with diameters lower than 20 nm, nanoparticles with intermediate sizes between 50 and 200 nm, and big irregular particles with typical size between 0.5 and 1.5 mu m. The fine nanoparticles of the first category are predominantly observed at higher pulse energies and tend to aggregate to form web-like and arborescent-like structures. The nanoparticles with intermediate sizes are observed for all pulse energies used and may appear isolated or aggregated in clusters. Finally, the larger irregular particles of the third category are observed for all energies and appear normally isolated.