27 resultados para intelligent-tutorielle Systeme
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
In this paper, a hybrid intelligent approach is proposed for short-term electricity prices forecasting in a competitive market. The proposed approach is based on the wavelet transform and a hybrid of neural networks and fuzzy logic. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications. Conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
De entre todos os paradigmas de aprendizagem actualmente identificados, a Aprendizagem por Reforço revela-se de especial interesse e aplicabilidade nos inúmeros processos que nos rodeiam: desde a solitária sonda que explora o planeta mais remoto, passando pelo programa especialista que aprende a apoiar a decisão médica pela experiencia adquirida, até ao cão de brincar que faz as delícias da criança interagindo com ela e adaptando-se aos seus gostos, e todo um novo mundo que nos rodeia e apela crescentemente a que façamos mais e melhor nesta área. Desde o aparecimento do conceito de aprendizagem por reforço, diferentes métodos tem sido propostos para a sua concretização, cada um deles abordando aspectos específicos. Duas vertentes distintas, mas complementares entre si, apresentam-se como características chave do processo de aprendizagem por reforço: a obtenção de experiência através da exploração do espaço de estados e o aproveitamento do conhecimento obtido através dessa mesma experiência. Esta dissertação propõe-se seleccionar alguns dos métodos propostos mais promissores de ambas as vertentes de exploração e aproveitamento, efectuar uma implementação de cada um destes sobre uma plataforma modular que permita a simulação do uso de agentes inteligentes e, através da sua aplicação na resolução de diferentes configurações de ambientes padrão, gerar estatísticas funcionais que permitam inferir conclusões que retractem entre outros aspectos a sua eficiência e eficácia comparativas em condições específicas.
Resumo:
Nos tempos actuais os equipamentos para Aquecimento Ventilação e Ar Condicionado (AVAC) ocupam um lugar de grande importância na concepção, desenvolvimento e manutenção de qualquer edifício por mais pequeno que este seja. Assim, surge a necessidade premente de racionalizar os consumos energéticos optimizando-os. A alta fiabilidade desejada nestes sistemas obriga-nos cada vez mais a descobrir formas de tornar a sua manutenção mais eficiente, pelo que é necessário prevenir de uma forma proactiva todas as falhas que possam prejudicar o bom desempenho destas instalações. Como tal, torna-se necessário detectar estas falhas/anomalias, sendo imprescíndivel que nos antecipemos a estes eventos prevendo o seu acontecimento num horizonte temporal pré-definido, permitindo actuar o mais cedo possível. É neste domínio que a presente dissertação tenta encontrar soluções para que a manutenção destes equipamentos aconteça de uma forma proactiva e o mais eficazmente possível. A ideia estruturante é a de tentar intervir ainda numa fase incipiente do problema, alterando o comportamento dos equipamentos monitorizados, de uma forma automática, com recursos a agentes inteligentes de diagnóstico de falhas. No caso em estudo tenta-se adaptar de forma automática o funcionamento de uma Unidade de Tratamento de Ar (UTA) aos desvios/anomalias detectadas, promovendo a paragem integral do sistema apenas como último recurso. A arquitectura aplicada baseia-se na utilização de técnicas de inteligência artificial, nomeadamente dos sistemas multiagente. O algoritmo utilizado e testado foi construído em Labview®, utilizando um kit de ferramentas de controlo inteligente para Labview®. O sistema proposto é validado através de um simulador com o qual se conseguem reproduzir as condições reais de funcionamento de uma UTA.
Resumo:
Associado à escassez dos combustíveis fósseis e ao desejado controlo de emissões nocivas para a atmosfera, assistimos no mundo ao desenvolvimento do um novo paradigma — a mobilidade eléctrica. Apesar das variações de maior ou menor arbítrio político dos governos, do excelente ou débil desenvolvimento tecnológico, relacionados com os veículos eléctricos, estamos perante um caminho, no que diz respeito à mobilidade eléctrica, que já não deve ser encarado como uma moda mas como uma orientação para o futuro da mobilidade. Portugal tendo dado mostras que pretende estar na dianteira deste desafio, necessita equacionar e compreender em que condições existirá uma infra-estrutura nacional capaz de fazer o veículo eléctrico vingar. Assim, neste trabalho, analisa-se o impacto da mobilidade eléctrica em algumas dessas infra-estruturas, nomeadamente nos edifícios multi-habitacionais e redes de distribuição em baixa tensão. São criados neste âmbito, quatro perfis de carregamento dos EVs nomeadamente: nas horas de chegada a casa; nas horas de vazio com início programado pelo condutor; nas horas de vazio controlado por operador de rede (“Smart Grid”); e um cenário que contempla a utilização do V2G. Com a obrigação legal de nos novos edifícios serem instaladas tomadas para veículos eléctricos, é estudado, com os cenários anteriores a possibilidade de continuar a conceber as instalações eléctricas, sem alterar algumas das disposições legais, ao abrigo dos regulamentos existentes. É também estudado, com os cenários criados e com a previsão da venda de veículos eléctricos até 2020, o impacto deste novo consumo no diagrama de carga do Sistema Eléctrico Nacional. Mostra-se assim que a introdução de sistemas inteligentes de distribuição de energia [Smartgrid e vehicle to grid” (V2G)] deverá ser encarada como a solução que por excelência contribuirá para um aproveitamento das infra-estruturas existentes e simultaneamente um uso acessível para os veículos eléctricos.
Resumo:
Esta tese tem por objectivo o desenho e avaliação de um sistema de contagem e classificação de veículos automóveis em tempo-real e sem fios. Pretende, também, ser uma alternativa aos actuais equipamentos, muito intrusivos nas vias rodoviárias. Esta tese inclui um estudo sobre as comunicações sem fios adequadas a uma rede de equipamentos sensores rodoviários, um estudo sobre a utilização do campo magnético como meio físico de detecção e contagem de veículos e um estudo sobre a autonomia energética dos equipamentos inseridos na via, com recurso, entre outros, à energia solar. O projecto realizado no âmbito desta tese incorpora, entre outros, a digitalização em tempo real da assinatura magnética deixada pela passagem de um veículo, no campo magnético da Terra, o respectivo envio para servidor via rádio e WAN, Wide Area Network, e o desenvolvimento de software tendo por base a pilha de protocolos ZigBee. Foram desenvolvidas aplicações para o equipamento sensor, para o coordenador, para o painel de controlo e para a biblioteca de Interface de um futuro servidor aplicacional. O software desenvolvido para o equipamento sensor incorpora ciclos de detecção e digitalização, com pausas de adormecimento de baixo consumo, e a activação das comunicações rádio durante a fase de envio, assegurando assim uma estratégia de poupança energética. Os resultados obtidos confirmam a viabilidade desta tecnologia para a detecção e contagem de veículos, assim como para a captura de assinatura usando magnetoresistências. Permitiram ainda verificar o alcance das comunicações sem fios com equipamento sensor embebido no asfalto e confirmar o modelo de cálculo da superfície do painel solar bem como o modelo de consumo energético do equipamento sensor.
Resumo:
This paper presents an artificial neural network approach for short-term wind power forecasting in Portugal. The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. The accuracy of the wind power forecasting attained with the proposed approach is evaluated against persistence and ARIMA approaches, reporting the numerical results from a real-world case study.
Resumo:
Nowadays, the cooperative intelligent transport systems are part of a largest system. Transportations are modal operations integrated in logistics and, logistics is the main process of the supply chain management. The supply chain strategic management as a simultaneous local and global value chain is a collaborative/cooperative organization of stakeholders, many times in co-opetition, to perform a service to the customers respecting the time, place, price and quality levels. The transportation, like other logistics operations must add value, which is achieved in this case through compression lead times and order fulfillments. The complex supplier's network and the distribution channels must be efficient and the integral visibility (monitoring and tracing) of supply chain is a significant source of competitive advantage. Nowadays, the competition is not discussed between companies but among supply chains. This paper aims to evidence the current and emerging manufacturing and logistics system challenges as a new field of opportunities for the automation and control systems research community. Furthermore, the paper forecasts the use of radio frequency identification (RFID) technologies integrated into an information and communication technologies (ICT) framework based on distributed artificial intelligence (DAI) supported by a multi-agent system (MAS), as the most value advantage of supply chain management (SCM) in a cooperative intelligent logistics systems. Logistical platforms (production or distribution) as nodes of added value of supplying and distribution networks are proposed as critical points of the visibility of the inventory, where these technological needs are more evident.
Resumo:
In this paper we present a methodology which enables the graphical representation, in a bi-dimensional Euclidean space, of atmospheric pollutants emissions in European countries. This approach relies on the use of Multidimensional Unfolding (MDU), an exploratory multivariate data analysis technique. This technique illustrates both the relationships between the emitted gases and the gases and their geographical origins. The main contribution of this work concerns the evaluation of MDU solutions. We use simulated data to define thresholds for the model fitting measures, allowing the MDU output quality evaluation. The quality assessment of the model adjustment is thus carried out as a step before interpretation of the gas types and geographical origins results. The MDU maps analysis generates useful insights, with an immediate substantive result and enables the formulation of hypotheses for further analysis and modeling.
Resumo:
This paper presents an integrated system for vehicle classification. This system aims to classify vehicles using different approaches: 1) based on the height of the first axle and_the number of axles; 2) based on volumetric measurements and; 3) based on features extracted from the captured image of the vehicle. The system uses a laser sensor for measurements and a set of image analysis algorithms to compute some visual features. By combining different classification methods, it is shown that the system improves its accuracy and robustness, enabling its usage in more difficult environments satisfying the proposed requirements established by the Portuguese motorway contractor BRISA.
Resumo:
Tuberculosis (TB) is a worldwide infectious disease that has shown over time extremely high mortality levels. The urgent need to develop new antitubercular drugs is due to the increasing rate of appearance of multi-drug resistant strains to the commonly used drugs, and the longer durations of therapy and recovery, particularly in immuno-compromised patients. The major goal of the present study is the exploration of data from different families of compounds through the use of a variety of machine learning techniques so that robust QSAR-based models can be developed to further guide in the quest for new potent anti-TB compounds. Eight QSAR models were built using various types of descriptors (from ADRIANA.Code and Dragon software) with two publicly available structurally diverse data sets, including recent data deposited in PubChem. QSAR methodologies used Random Forests and Associative Neural Networks. Predictions for the external evaluation sets obtained accuracies in the range of 0.76-0.88 (for active/inactive classifications) and Q(2)=0.66-0.89 for regressions. Models developed in this study can be used to estimate the anti-TB activity of drug candidates at early stages of drug development (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this work is proposed the design of a system to create and handle Electric Vehicles (EV) charging procedures, based on intelligent process. Due to the electrical power distribution network limitation and absence of smart meter devices, Electric Vehicles charging should be performed in a balanced way, taking into account past experience, weather information based on data mining, and simulation approaches. In order to allow information exchange and to help user mobility, it was also created a mobile application to assist the EV driver on these processes. This proposed Smart ElectricVehicle Charging System uses Vehicle-to-Grid (V2G) technology, in order to connect Electric Vehicles and also renewable energy sources to Smart Grids (SG). This system also explores the new paradigm of Electrical Markets (EM), with deregulation of electricity production and use, in order to obtain the best conditions for commercializing electrical energy.
Resumo:
CoDeSys "Controller Development Systems" is a development environment for programming in the area of automation controllers. It is an open source solution completely in line with the international industrial standard IEC 61131-3. All five programming languages for application programming as defined in IEC 61131-3 are available in the development environment. These features give professionals greater flexibility with regard to programming and allow control engineers have the ability to program for many different applications in the languages in which they feel most comfortable. Over 200 manufacturers of devices from different industrial sectors offer intelligent automation devices with a CoDeSys programming interface. In 2006, version 3 was released with new updates and tools. One of the great innovations of the new version of CoDeSys is object oriented programming. Object oriented programming (OOP) offers great advantages to the user for example when wanting to reuse existing parts of the application or when working on one application with several developers. For this reuse can be prepared a source code with several well known parts and this is automatically generated where necessary in a project, users can improve then the time/cost/quality management. Until now in version 2 it was necessary to have hardware interface called “Eni-Server” to have access to the generated XML code. Another of the novelties of the new version is a tool called Export PLCopenXML. This tool makes it possible to export the open XML code without the need of specific hardware. This type of code has own requisites to be able to comply with the standard described above. With XML code and with the knowledge how it works it is possible to do component-oriented development of machines with modular programming in an easy way. Eplan Engineering Center (EEC) is a software tool developed by Mind8 GmbH & Co. KG that allows configuring and generating automation projects. Therefore it uses modules of PLC code. The EEC already has a library to generate code for CoDeSys version 2. For version 3 and the constant innovation of drivers by manufacturers, it is necessary to implement a new library in this software. Therefore it is important to study the XML export to be then able to design any type of machine. The purpose of this master thesis is to study the new version of the CoDeSys XML taking into account all aspects and impact on the existing CoDeSys V2 models and libraries in the company Harro Höfliger Verpackungsmaschinen GmbH. For achieve this goal a small sample named “Traffic light” in CoDeSys version 2 will be done and then, using the tools of the new version it there will be a project with version 3 and also the EEC implementation for the automatically generated code.
Resumo:
This paper presents an IEEE 802.11p full-stack prototype implementation to data exchange among vehicles and between vehicles and the roadway infrastructures. The prototype architecture is based on FPGAs for Intermediate Frequency (IF) and base band purposes, using 802.11a based transceivers for RF interfaces. Power amplifiers were also addressed, by using commercial and in-house solutions. This implementation aims to provide technical solutions for Intelligent Transportation Systems (ITS) field, namely for tolling and traffic management related services, in order to promote safety, mobility and driving comfort through the dynamic and real-time cooperation among vehicles and/or between vehicles and infrastructures. The performance of the proposed scheme is tested under realistic urban and suburban driving conditions. Preliminary results are promising, since they comply with most of the 802.11p standard requirements.
Resumo:
This paper presents a proposal for an automatic vehicle detection and classification (AVDC) system. The proposed AVDC should classify vehicles accordingly to the Portuguese legislation (vehicle height over the first axel and number of axels), and should also support profile based classification. The AVDC should also fulfill the needs of the Portuguese motorway operator, Brisa. For the classification based on the profile we propose:he use of Eigenprofiles, a technique based on Principal Components Analysis. The system should also support multi-lane free flow for future integration in this kind of environments.
Resumo:
Trabalho de projeto para obtenção do grau de Mestre em Engenharia Informática e de Computadores