27 resultados para instantaneous frequency estimation
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
A motivação para este trabalho vem da necessidade que o autor tem em poder registar as notas tocadas na guitarra durante o processo de improviso. Quando o músico está a improvisar na guitarra, muitas vezes não se recorda das notas tocadas no momento, este trabalho trata o desenvolvimento de uma aplicação para guitarristas, que permita registar as notas tocadas na guitarra eléctrica ou clássica. O sinal é adquirido a partir da guitarra e processado com requisitos de tempo real na captura do sinal. As notas produzidas pela guitarra eléctrica, ligada ao computador, são representadas no formato de tablatura e/ou partitura. Para este efeito a aplicação capta o sinal proveniente da guitarra eléctrica a partir da placa de som do computador e utiliza algoritmos de detecção de frequência e algoritmos de estimação de duração de cada sinal para construir o registo das notas tocadas. A aplicação é desenvolvida numa perspectiva multi-plataforma, podendo ser executada em diferentes sistemas operativos Windows e Linux, usando ferramentas e bibliotecas de domínio público. Os resultados obtidos mostram a possibilidade de afinar a guitarra com valores de erro na ordem de 2 Hz em relação às frequências de afinação standard. A escrita da tablatura apresenta resultados satisfatórios, mas que podem ser melhorados. Para tal será necessário melhorar a implementação de técnicas de processamento do sinal bem como a comunicação entre processos para resolver os problemas encontrados nos testes efectuados.
Resumo:
This paper extents the by now classic sensor fusion complementary filter (CF) design, involving two sensors, to the case where three sensors that provide measurements in different bands are available. This paper shows that the use of classical CF techniques to tackle a generic three sensors fusion problem, based solely on their frequency domain characteristics, leads to a minimal realization, stable, sub-optimal solution, denoted as Complementary Filters3 (CF3). Then, a new approach for the estimation problem at hand is used, based on optimal linear Kalman filtering techniques. Moreover, the solution is shown to preserve the complementary property, i.e. the sum of the three transfer functions of the respective sensors add up to one, both in continuous and discrete time domains. This new class of filters are denoted as Complementary Kalman Filters3 (CKF3). The attitude estimation of a mobile robot is addressed, based on data from a rate gyroscope, a digital compass, and odometry. The experimental results obtained are reported.
Resumo:
As it is widely known, in structural dynamic applications, ranging from structural coupling to model updating, the incompatibility between measured and simulated data is inevitable, due to the problem of coordinate incompleteness. Usually, the experimental data from conventional vibration testing is collected at a few translational degrees of freedom (DOF) due to applied forces, using hammer or shaker exciters, over a limited frequency range. Hence, one can only measure a portion of the receptance matrix, few columns, related to the forced DOFs, and rows, related to the measured DOFs. In contrast, by finite element modeling, one can obtain a full data set, both in terms of DOFs and identified modes. Over the years, several model reduction techniques have been proposed, as well as data expansion ones. However, the latter are significantly fewer and the demand for efficient techniques is still an issue. In this work, one proposes a technique for expanding measured frequency response functions (FRF) over the entire set of DOFs. This technique is based upon a modified Kidder's method and the principle of reciprocity, and it avoids the need for modal identification, as it uses the measured FRFs directly. In order to illustrate the performance of the proposed technique, a set of simulated experimental translational FRFs is taken as reference to estimate rotational FRFs, including those that are due to applied moments.
Resumo:
The measurement of room impulse response (RIR) when there are high background noise levels frequently means one must deal with very low signal-to-noise ratios (SNR). if such is the case, the measurement might yield unreliable results, even when synchronous averaging techniques are used. Furthermore, if there are non-linearities in the apparatus or system time variances, the final SNR can be severely degraded. The test signals used in RIR measurement are often disturbed by non-stationary ambient noise components. A novel approach based on the energy analysis of ambient noise - both in the time and in frequency - was considered. A modified maximum length sequence (MLS) measurement technique. referred to herein as the hybrid MLS technique, was developed for use in room acoustics. The technique consists of reducing the noise energy of the captured sequences before applying the averaging technique in order to improve the overall SNRs and frequency response accuracy. Experiments were conducted under real conditions with different types of underlying ambient noises. Results are shown and discussed. Advantages and disadvantages of the hybrid MLS technique over standard MLS technique are evaluated and discussed. Our findings show that the new technique leads to a significant increase in the overall SNR. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A new algorithm for the velocity vector estimation of moving ships using Single Look Complex (SLC) SAR data in strip map acquisition mode is proposed. The algorithm exploits both amplitude and phase information of the Doppler decompressed data spectrum, with the aim to estimate both the azimuth antenna pattern and the backscattering coefficient as function of the look angle. The antenna pattern estimation provides information about the target velocity; the backscattering coefficient can be used for vessel classification. The range velocity is retrieved in the slow time frequency domain by estimating the antenna pattern effects induced by the target motion, while the azimuth velocity is calculated by the estimated range velocity and the ship orientation. Finally, the algorithm is tested on simulated SAR SLC data.
Resumo:
Formaldehyde (FA), also known as formalin, formal and methyl aldehydes, is a colorless, flammable, strong-smelling gas. It has an important application in embalming tissues and that result in exposures for workers in the pathology anatomy laboratories and mortuaries. Occupational exposure to FA has been shown to induce nasopharyngeal cancer and has been classified as carcinogenic to humans (group 1) on the basis of sufficient evidence in humans and sufficient evidence in experimental animals. Manifold in vitro studies clearly indicated that FA is genotoxic. FA induced various genotoxic effects in proliferating cultured mammalian cells. The cytokinesis-block micronucleus (CBMN) assay was originally developped as an ideal system form easuring micronucleus (MN), however it can also be used to measure nucleoplasmic bridges (NBP) and nuclear buds (NBUD). Over the past decade another unique mechanism of micronucleus formation, known as nuclear budding has emerged. NBUDS is considered as a marker of gene amplification and/or altered gene dosage because the nuclear budding process is the mechanism by which cells removed amplified and/excess DNA.
Resumo:
Genomic damage is probably the most important fundamental cause of development and degenerative disease. It is also well established that genomic damage is produced by environmental exposure to genotoxins, medical procedures (e.g. radiation and chemicals), micronutrient deficiency (e.g. folate), lifestyle factors (e.g. alcohol, smoking, drugs and stress), and genetic factors such as inherited defects in DNA metabolism and/or repair. Tobacco smoke has been associated to a higher risk of development of cancer, especially in the oral cavity, larynx and lungs, as these are places of direct contact with many carcinogenic tobacco’s compounds. Alcohol is definitely a recognized agent that influence cells in a genotoxic form, been citied as a strong agent with potential in the development of carcinogenic lesions. Epidemiological evidence points to a strong synergistic effect between cigarette smoking and alcohol consumption in the induction of cancers in the oral cavity. Approximately 90% of human cancers originate from epithelial cells. Therefore, it could be argued that oral epithelial cells represent a preferred target site for early genotoxic events induced by carcinogenic agents entering the body via inhalation and ingestion. The MN assay in buccal cells was also used to study cancerous and precancerous lesions and to monitor the effects of a number of chemopreventive agents.
Resumo:
Formaldehyde (FA) is ubiquitous in the environment and is a chemical agent that possesses high reactivity. Occupational exposure to FA has been shown to induce nasopharyngeal cancer and has been classified as carcinogenic to humans (group 1) on the basis of sufficient evidence in humans and sufficient evidence in experimental animals. The exposure to this substance is epidemiologically linked to cancer and nuclear changes detected by the cytokinesis-block micronucleus test (CBMN). This method is extensively used in molecular epidemiology, since it determines several biomarkers of genotoxicity, such as micronucleus (biomarkers of chromosomes breakage or loss), nucleoplasmic bridges (biomarker of chromosome rearrangement, poor repair and / or telomeres fusion) and nuclear buds (biomarker of elimination of amplified DNA). The gene X-ray repair cross-complementing group 3 (XRCC3) is involved in homologous recombination repair of cross-links and chromosomal double-strand breaks and at least one polymorphism has been reported in codon 241, a substitution of a methionine for a threonine.
Resumo:
Formaldehyde (FA) is a colourless gas widely used in the industry and hospitals as an aqueous solution, formalin. It is extremely reactive and induces various genotoxic effects in proliferating cultured mammalian cells. Tobacco smoke has been epidemiologically associated to a higher risk of development of cancer, especially in the oral cavity, larynx and lungs, as these are places of direct contact with many carcinogenic tobacco’s compounds. Genetic polymorphisms in enzymes involved in the metabolism are very important and can make changes in the individual susceptibility to disease. Alcohol dehydrogenase class 3 (ADH3), also known as formaldehyde dehydrogenase dependent of glutathione, is the major enzyme involved in the formaldehyde oxidation, especially in the buccal mucosa. The polymorphism in study is a substitution of an isoleucine for a valine in codon 349. The cytokinesis-blocked micronucleus assay (CBMN) in human lymphocytes is one of the most commonly used methods for measuring DNA damage, namely the detection of micronucleus, nucleoplasmic bridges, and nuclear buds, classified as genotoxicity biomarkers.
Occupational exposure to formaldehyde: effects of years of exposure in the frequency of micronucleus
Resumo:
Formaldehyde: an important industrial compound used in the manufacture of synthetic resins and chemical compounds such as lubricants and adhesives; also applied as a disinfectant, preservative and in cosmetics productions; relevant workplace exposure to FA also occurs in anatomy, pathology and in mortuaries; classified by IARC as carcinogenic to humans (Group 1), based on sufficient evidence in humans and experimental animals; manifold in vitro studies indicated that FA can induce genotoxic effects in proliferating cultured mammalian cells. Aim of the study: to evaluate if years of exposure induced a genotoxic biomarkers increase, namely MN in lymphocytes and buccal cells, in workers occupationally exposed to FA (factory and pathology anatomy laboratory).
Resumo:
Formaldehyde is classified by IARC as carcinogenic to humans (nasopharyngeal cancer). Tobacco smoke has been epidemiologically associated to a higher risk of development of cancer, especially in the oral cavity, larynx and lungs, as these are places of direct contact with many carcinogenic tobacco’s compounds. XRCC3 is involved in homologous recombination repair of cross-links and chromosomal double-strand breaks (Thr241Met polymorphism). The aim of the study is to determine whether there is an in vivo association between genetic polymorphism of the gene XRCC3 and the frequency of genotoxicity biomarkers in subjects exposed or not to formaldehyde and with or without tobacco consumption.
Resumo:
The portfolio generating the iTraxx EUR index is modeled by coupled Markov chains. Each of the industries of the portfolio evolves according to its own Markov transition matrix. Using a variant of the method of moments, the model parameters are estimated from a data set of Standard and Poor's. Swap spreads are evaluated by Monte-Carlo simulations. Along with an actuarially fair spread, at least squares spread is considered.
Resumo:
Although stock prices fluctuate, the variations are relatively small and are frequently assumed to be normal distributed on a large time scale. But sometimes these fluctuations can become determinant, especially when unforeseen large drops in asset prices are observed that could result in huge losses or even in market crashes. The evidence shows that these events happen far more often than would be expected under the generalized assumption of normal distributed financial returns. Thus it is crucial to properly model the distribution tails so as to be able to predict the frequency and magnitude of extreme stock price returns. In this paper we follow the approach suggested by McNeil and Frey (2000) and combine the GARCH-type models with the Extreme Value Theory (EVT) to estimate the tails of three financial index returns DJI,FTSE 100 and NIKKEI 225 representing three important financial areas in the world. Our results indicate that EVT-based conditional quantile estimates are much more accurate than those from conventional AR-GARCH models assuming normal or Student’s t-distribution innovations when doing out-of-sample estimation (within the insample estimation, this is so for the right tail of the distribution of returns).
Resumo:
A crucial method for investigating patients with coronary artery disease (CAD) is the calculation of the left ventricular ejection fraction (LVEF). It is, consequently, imperative to precisely estimate the value of LVEF--a process that can be done with myocardial perfusion scintigraphy. Therefore, the present study aimed to establish and compare the estimation performance of the quantitative parameters of the reconstruction methods filtered backprojection (FBP) and ordered-subset expectation maximization (OSEM). Methods: A beating-heart phantom with known values of end-diastolic volume, end-systolic volume, and LVEF was used. Quantitative gated SPECT/quantitative perfusion SPECT software was used to obtain these quantitative parameters in a semiautomatic mode. The Butterworth filter was used in FBP, with the cutoff frequencies between 0.2 and 0.8 cycles per pixel combined with the orders of 5, 10, 15, and 20. Sixty-three reconstructions were performed using 2, 4, 6, 8, 10, 12, and 16 OSEM subsets, combined with several iterations: 2, 4, 6, 8, 10, 12, 16, 32, and 64. Results: With FBP, the values of end-diastolic, end-systolic, and the stroke volumes rise as the cutoff frequency increases, whereas the value of LVEF diminishes. This same pattern is verified with the OSEM reconstruction. However, with OSEM there is a more precise estimation of the quantitative parameters, especially with the combinations 2 iterations × 10 subsets and 2 iterations × 12 subsets. Conclusion: The OSEM reconstruction presents better estimations of the quantitative parameters than does FBP. This study recommends the use of 2 iterations with 10 or 12 subsets for OSEM and a cutoff frequency of 0.5 cycles per pixel with the orders 5, 10, or 15 for FBP as the best estimations for the left ventricular volumes and ejection fraction quantification in myocardial perfusion scintigraphy.
Resumo:
The International Agency for Research on Cancer classified formaldehyde as carcinogenic to humans because there is “sufficient epidemiological evidence that it causes nasopharyngeal cancer in humans”. Genes involved in DNA repair and maintenance of genome integrity are critically involved in protecting against mutations that lead to cancer and/or inherited genetic disease. Association studies have recently provided evidence for a link between DNA repair polymorphisms and micronucleus (MN) induction. We used the cytokinesis-block micronucleus (CBMN assay) in peripheral lymphocytes and MN test in buccal cells to investigate the effects of XRCC3 Thr241Met, ADH5 Val309Ile, and Asp353Glu polymorphisms on the frequency of genotoxicity biomarkers in individuals occupationally exposed to formaldehyde (n = 54) and unexposed workers (n = 82). XRCC3 participates in DNA double-strand break/recombination repair, while ADH5 is an important component of cellular metabolism for the elimination of formaldehyde. Exposed workers had significantly higher frequencies (P < 0.01) than controls for all genotoxicity biomarkers evaluated in this study. Moreover, there were significant associations between XRCC3 genotypes and nuclear buds, namely XRCC3 Met/Met (OR = 3.975, CI 1.053–14.998, P = 0.042) and XRCC3 Thr/Met (OR = 5.632, CI 1.673–18.961, P = 0.005) in comparison with XRCC3 Thr/Thr. ADH5 polymorphisms did not show significant effects. This study highlights the importance of integrating genotoxicity biomarkers and genetic polymorphisms in human biomonitoring studies.