2 resultados para high-excited surface
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Professional exposure to fungal pathogens: an update to exposure conditions and exposure measurement
Resumo:
In many occupational settings an exposure to fungi occurs. Fungal exposure may occur for instance in the form of dermatocytes, yeasts or mold. Associated to the fungi themselves an exposure to cell wall components like ß(1 ? 3)-D-glucans, to mycotoxins or to microbial volatile compounds can occur. Health hazards may differ across species because fungi may produce different allergens and mycotoxins, and some species can infect humans. Occupational settings are often characterized by special exposure conditions with respect to duration, frequency and especially to the level of exposure resulting at least sometimes to high or very high fungal exposure. Because of these special conditions occupational settings are suitable for epidemiologic studies. However, the knowledge about occupational exposure to fungi and associated compounds like mycotoxins is still fragmentary and not well disseminated. An indication for a high fungal exposure is for instance the handling of dry natural products like grain, hay or herbal plants with a high specific surface and the tendency to release dust during handling. The fungal components often form the determinative part of such dusts and might be a vehicle to respiratory airways. The authors will present results of exposure measurements of occupational settings and exposure conditions which are only rarely investigated.
Resumo:
Tris(2-ethylhexyl) trimellitate (TOTM) was recently suggested as a reference fluid for industrial use associated with high viscosity at elevated temperature and pressure. Viscosity and density data have already been published on one sample covering the temperature range (303-373) K and at pressures up to about 65 MPa. The viscosity covered a range from about (9 to 460) mPa s. In the present article we study several other characteristics of TOTM that must be available if it were to be adopted as a standard. First, we present values for the viscosity and density obtained with a different sample of TOTM to examine the important feature of consistency among different samples. Vibrating-wire viscosity measurements were performed at pressures from (5 to 100) MPa, along 6 isotherms between (303 and 373) K. Density measurements were carried out from (293 to 373) K up to 68 MPa, along 4 isotherms, using an Anton Paar DMA HP vibrating U-tube densimeter. Secondly, we report a study of the effect of water contamination on the viscosity of TOTM, performed using an Ubbelhode viscometer under atmospheric pressure. Finally, in order to support the use of TOTM as a reference liquid for the calibration of capillary viscometers, values of its surface tension, obtained by the pendant drop method, are provided. (C) 2016 Elsevier B.V. All rights reserved.