18 resultados para height partition clustering
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
In cluster analysis, it can be useful to interpret the partition built from the data in the light of external categorical variables which are not directly involved to cluster the data. An approach is proposed in the model-based clustering context to select a number of clusters which both fits the data well and takes advantage of the potential illustrative ability of the external variables. This approach makes use of the integrated joint likelihood of the data and the partitions at hand, namely the model-based partition and the partitions associated to the external variables. It is noteworthy that each mixture model is fitted by the maximum likelihood methodology to the data, excluding the external variables which are used to select a relevant mixture model only. Numerical experiments illustrate the promising behaviour of the derived criterion. © 2014 Springer-Verlag Berlin Heidelberg.
Resumo:
Clustering ensemble methods produce a consensus partition of a set of data points by combining the results of a collection of base clustering algorithms. In the evidence accumulation clustering (EAC) paradigm, the clustering ensemble is transformed into a pairwise co-association matrix, thus avoiding the label correspondence problem, which is intrinsic to other clustering ensemble schemes. In this paper, we propose a consensus clustering approach based on the EAC paradigm, which is not limited to crisp partitions and fully exploits the nature of the co-association matrix. Our solution determines probabilistic assignments of data points to clusters by minimizing a Bregman divergence between the observed co-association frequencies and the corresponding co-occurrence probabilities expressed as functions of the unknown assignments. We additionally propose an optimization algorithm to find a solution under any double-convex Bregman divergence. Experiments on both synthetic and real benchmark data show the effectiveness of the proposed approach.
Resumo:
In cluster analysis, it can be useful to interpret the partition built from the data in the light of external categorical variables which are not directly involved to cluster the data. An approach is proposed in the model-based clustering context to select a number of clusters which both fits the data well and takes advantage of the potential illustrative ability of the external variables. This approach makes use of the integrated joint likelihood of the data and the partitions at hand, namely the model-based partition and the partitions associated to the external variables. It is noteworthy that each mixture model is fitted by the maximum likelihood methodology to the data, excluding the external variables which are used to select a relevant mixture model only. Numerical experiments illustrate the promising behaviour of the derived criterion.
Resumo:
The Evidence Accumulation Clustering (EAC) paradigm is a clustering ensemble method which derives a consensus partition from a collection of base clusterings obtained using different algorithms. It collects from the partitions in the ensemble a set of pairwise observations about the co-occurrence of objects in a same cluster and it uses these co-occurrence statistics to derive a similarity matrix, referred to as co-association matrix. The Probabilistic Evidence Accumulation for Clustering Ensembles (PEACE) algorithm is a principled approach for the extraction of a consensus clustering from the observations encoded in the co-association matrix based on a probabilistic model for the co-association matrix parameterized by the unknown assignments of objects to clusters. In this paper we extend the PEACE algorithm by deriving a consensus solution according to a MAP approach with Dirichlet priors defined for the unknown probabilistic cluster assignments. In particular, we study the positive regularization effect of Dirichlet priors on the final consensus solution with both synthetic and real benchmark data.
Resumo:
In this article we consider the monoid O(mxn) of all order-preserving full transformations on a chain with mn elements that preserve a uniformm-partition and its submonoids O(mxn)(+) and O(mxn)(-) of all extensive transformations and of all co-extensive transformations, respectively. We determine their ranks and construct a bilateral semidirect product decomposition of O(mxn) in terms of O(mxn)(-) and O(mxn)(+).
Resumo:
Wastewater from cork processing industry present high levels of organic and phenolic compounds, such as tannins, with a low biodegradability and a significant toxicity. These compounds are not readily removed by conventional municipal wastewater treatment, which is largely based on primary sedimentation followed by biological treatment. The purpose of this work is to study the biodegradability of different cork wastewater fractions, obtained through membrane separation, in order to assess its potential for biological treatment and having in view its valorisation through tannins recovery, which could be applied in other industries. Various ultrafiltration and nanofiltration membranes where used, with molecular weight cut-offs (MWCO) ranging from 0.125 to 91 kDa. The wastewater and the different permeated fractions were analyzed in terms of Total Organic Carbon (TOC), Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Phenols (TP), Tannins, Color, pH and Conductivity. Results for the wastewater shown that it is characterized by a high organic content (670.5-1056.8 mg TOC/L, 2285-2604 mg COD/L, 1000-1225 mg BOD/L), a relatively low biodegradability (0.35-0.38 for BODs/COD and 0.44-0.47 for BOD20/COD) and a high content of phenols (360-410 mg tannic acid/L) and tannins (250-270 mg tannic acid/L). The results for the wastewater fractions shown a general decrease on the pollutant content of permeates, and an increase of its biodegradability, with the decrease of the membrane MWCO applied. Particularly, the permeated fraction from the membrane MWCO of 3.8 kDa, presented a favourable index of biodegradability (0.8) and a minimized phenols toxicity that enables it to undergo a biological treatment and so, to be treated in a municipal wastewater treatment plant. Also, within the perspective of valorisation, the rejected fraction obtained through this membrane MWCO may have a significant potential for tannins recovery. Permeated fractions from membranes with MWCO lower than 3.8 kDa, presented a particularly significant decline of organic matter and phenols, enabling this permeates to be reused in the cork processing and so, representing an interesting perspective of zero discharge for the cork industry, with evident environmental and economic advantages. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Clustering analysis is a useful tool to detect and monitor disease patterns and, consequently, to contribute for an effective population disease management. Portugal has the highest incidence of tuberculosis in the European Union (in 2012, 21.6 cases per 100.000 inhabitants), although it has been decreasing consistently. Two critical PTB (Pulmonary Tuberculosis) areas, metropolitan Oporto and metropolitan Lisbon regions, were previously identified through spatial and space-time clustering for PTB incidence rate and risk factors. Identifying clusters of temporal trends can further elucidate policy makers about municipalities showing a faster or a slower TB control improvement.
Resumo:
Research on the problem of feature selection for clustering continues to develop. This is a challenging task, mainly due to the absence of class labels to guide the search for relevant features. Categorical feature selection for clustering has rarely been addressed in the literature, with most of the proposed approaches having focused on numerical data. In this work, we propose an approach to simultaneously cluster categorical data and select a subset of relevant features. Our approach is based on a modification of a finite mixture model (of multinomial distributions), where a set of latent variables indicate the relevance of each feature. To estimate the model parameters, we implement a variant of the expectation-maximization algorithm that simultaneously selects the subset of relevant features, using a minimum message length criterion. The proposed approach compares favourably with two baseline methods: a filter based on an entropy measure and a wrapper based on mutual information. The results obtained on synthetic data illustrate the ability of the proposed expectation-maximization method to recover ground truth. An application to real data, referred to official statistics, shows its usefulness.
Resumo:
Research on cluster analysis for categorical data continues to develop, new clustering algorithms being proposed. However, in this context, the determination of the number of clusters is rarely addressed. We propose a new approach in which clustering and the estimation of the number of clusters is done simultaneously for categorical data. We assume that the data originate from a finite mixture of multinomial distributions and use a minimum message length criterion (MML) to select the number of clusters (Wallace and Bolton, 1986). For this purpose, we implement an EM-type algorithm (Silvestre et al., 2008) based on the (Figueiredo and Jain, 2002) approach. The novelty of the approach rests on the integration of the model estimation and selection of the number of clusters in a single algorithm, rather than selecting this number based on a set of pre-estimated candidate models. The performance of our approach is compared with the use of Bayesian Information Criterion (BIC) (Schwarz, 1978) and Integrated Completed Likelihood (ICL) (Biernacki et al., 2000) using synthetic data. The obtained results illustrate the capacity of the proposed algorithm to attain the true number of cluster while outperforming BIC and ICL since it is faster, which is especially relevant when dealing with large data sets.
Resumo:
In data clustering, the problem of selecting the subset of most relevant features from the data has been an active research topic. Feature selection for clustering is a challenging task due to the absence of class labels for guiding the search for relevant features. Most methods proposed for this goal are focused on numerical data. In this work, we propose an approach for clustering and selecting categorical features simultaneously. We assume that the data originate from a finite mixture of multinomial distributions and implement an integrated expectation-maximization (EM) algorithm that estimates all the parameters of the model and selects the subset of relevant features simultaneously. The results obtained on synthetic data illustrate the performance of the proposed approach. An application to real data, referred to official statistics, shows its usefulness.
Resumo:
This paper focus on a demand response model analysis in a smart grid context considering a contingency scenario. A fuzzy clustering technique is applied on the developed demand response model and an analysis is performed for the contingency scenario. Model considerations and architecture are described. The demand response developed model aims to support consumers decisions regarding their consumption needs and possible economic benefits.
Resumo:
Biosignals analysis has become widespread, upstaging their typical use in clinical settings. Electrocardiography (ECG) plays a central role in patient monitoring as a diagnosis tool in today's medicine and as an emerging biometric trait. In this paper we adopt a consensus clustering approach for the unsupervised analysis of an ECG-based biometric records. This type of analysis highlights natural groups within the population under investigation, which can be correlated with ground truth information in order to gain more insights about the data. Preliminary results are promising, for meaningful clusters are extracted from the population under analysis. © 2014 EURASIP.
Resumo:
This paper focus on a demand response model analysis in a smart grid context considering a contingency scenario. A fuzzy clustering technique is applied on the developed demand response model and an analysis is performed for the contingency scenario. Model considerations and architecture are described. The demand response developed model aims to support consumers decisions regarding their consumption needs and possible economic benefits.
Resumo:
The rank of a semigroup, an important and relevant concept in Semigroup Theory, is the cardinality of a least-size generating set. Semigroups of transformations that preserve or reverse the order or the orientation as well as semigroups of transformations preserving an equivalence relation have been widely studied over the past decades by many authors. The purpose of this article is to compute the ranks of the monoid
Resumo:
In the present paper we focus on the performance of clustering algorithms using indices of paired agreement to measure the accordance between clusters and an a priori known structure. We specifically propose a method to correct all indices considered for agreement by chance - the adjusted indices are meant to provide a realistic measure of clustering performance. The proposed method enables the correction of virtually any index - overcoming previous limitations known in the literature - and provides very precise results. We use simulated datasets under diverse scenarios and discuss the pertinence of our proposal which is particularly relevant when poorly separated clusters are considered. Finally we compare the performance of EM and KMeans algorithms, within each of the simulated scenarios and generally conclude that EM generally yields best results.