5 resultados para gene activity

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gene expression of three antioxidant enzymes, Mn superoxide dismutase (MnSOD), Cu,Zn superoxide dismutase (Cu,ZnSOD), and glutathione reductase (GR) was investigated in stationary phase Saccharomyces cerevisiae during menadione-induced oxidative stress. Both GR and Cu,ZnSOD mRNA steady state levels increased, reaching a plateau at about 90 min exposure to menadione. GR mRNA induction was higher than that of Cu,ZnSOD (about 14-fold and 9-fold after 90 min, respectively). A different pattern of response was obtained for MnSOD mRNA, with a peak at about 15 min (about 8-fold higher) followed by a decrease to a plateau approximately 4-fold higher than the control value. However, these increased mRNA levels did not result in increased protein levels and activities of these enzymes. Furthermore, exposure to menadione decreased MnSOD activity to half its value, indicating that the enzyme is partially inactivated due to oxidative damage. Cu,ZnSOD protein levels were increased 2-fold, but MnSOD protein levels were unchanged after exposure to menadione in the presence of the proteolysis inhibitor phenylmethylsulfonyl fluoride. These results indicate that the rates of Cu,ZnSOD synthesis and proteolysis are increased, while the rates of MnSOD synthesis and proteolysis are unchanged by exposure to menadione. Also, the translational efficiency for both enzymes is probably decreased, since increases in protein levels when proteolysis is inhibited do not reflect the increases in mRNA levels. Our results indicate that oxidative stress modifies MnSOD, Cu,ZnSOD, and GR gene expression in a complex way, not only at the transcription level but also at the post-transcriptional, translational, and post-translational levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction - Obesity became a major public health problem as a result of its increasing prevalence worldwide. Paraoxonase-1 (PON1) is an esterase able to protect membranes and lipoproteins from oxidative modifications. At the PON1 gene, several polymorphisms in the promoter and coding regions have been identified. The aims of this study were i) to assess PON1 L55M and Q192R polymorphisms as a risk factor for obesity in women; ii) to compare PON1 activity according to the expression of each allele in L55M and Q192R polymorphisms; iii) to compare PON1 activity between obese and normal-weight women. Materials and methods - We studied 75 healthy (35.9±8.2 years) and 81 obese women (34.3±8.2 years). Inclusion criteria for obese subjects were body mass index ≥30 kg/m2 and absence of inflammatory/neoplasic conditions or kidney/hepatic dysfunction. The two PON1 polymorphisms were assessed by real-time PCR with TaqMan probes. PON1 enzymatic activity was assessed by spectrophotometric methods, using paraoxon as a substrate. Results - No significant differences were found for PON1 activity between normal and obese women. Nevertheless, PON1 activity was greater (P<0.01) for the RR genotype (in Q192R polymorphism) and for the LL genotype (in L55M polymorphism). The frequency of allele R of Q192R polymorphism was significantly higher in obese women (P<0.05) and was associated with an increased risk of obesity (odds ratio=2.0 – 95% confidence interval (1.04; 3.87)). Conclusion - 55M and Q192R polymorphisms influence PON1 activity. The allele R of the Q192R polymorphism is associated with an increased risk for development of obesity among Portuguese Caucasian premenopausal women.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction and Objectives - Paraoxonases may exert anti-atherogenic action by reducing lipid peroxidation. Previous studies examined associations between polymorphisms in the paraoxonase 1 (PON1) gene and development of coronary artery disease (CAD), with inconsistent results. Given the similarities in clinical and pathophysiological risk factors of CAD and calcific aortic valve stenosis (CAVS), we postulated a link between PON1 alleles and CAVS progression. Methods - We investigated the association between PON1 55 and 192 single nucleotide polymorphisms (SNPs), their enzyme activity, and CAVS progression assessed by aortic valve area and transvalvular peak velocity in 67 consecutive patients with moderate CAVS and 251 healthy controls. Results - PON1 paraoxonase activity was higher in CAVS patients (P<0.001). The PON1 genotype Q192R SNP (P=0.03) and variant allele (R192) (P=0.01) frequencies differed between CAVS patients and controls. Significant association existed between PON1 enzyme activity, phenotypic effects of PON1 192 genotype polymorphisms, and CAVS progression, but not between PON1 55 and high-density lipoprotein (P=0.44) or low-density lipoprotein cholesterol (P=0.12), between 192 genotype and high-density lipoprotein (P=0.24) or low-density lipoprotein cholesterol (P=0.52). Conclusion - The PON1 genotype Q192R SNP has an important effect on CAVS disease progression. This study helps outline a genotype-phenotype relationship for PON1 in this unique population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The histone deacetylase inhibitors sodium butyrate (NaBu) and trichostatin A (TSA) exhibit anti-proliferative activity by causing cell cycle arrest and apoptosis. The mechanisms by which NaBu and TSA cause apoptosis and cell cycle arrest are not yet completely clarified, although these agents are known to modulate the expression of several genes including cell-cycle- and apoptosis-related genes. The enzymes involved in the process of translation have important roles in controlling cell growth and apoptosis, and several of these translation factors have been described as having a causal role in the development of cancer. The expression patterns of the translation mechanism, namely of the elongation factors eEF1A1 and eEF1A2, and of the termination factors eRF1 and eRF3, were studied in the breast cancer cell line MCF-7 by real-time quantitative reverse transcription-polymerase chain reaction after a 24-h treatment with NaBu and TSA. NaBu induced inhibition of translation factors' transcription, whereas TSA caused an increase in mRNA levels. Thus, these two agents may modulate the expression of translation factors through different pathways. We propose that the inhibition caused by NaBu may, in part, be responsible for the cell cycle arrest and apoptosis induced by this agent in MCF-7 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The disturbing emergence of multidrug-resistant strains of Mycobacterium tuberculosis (Mtb) has been driving the scientific community to urgently search for new and efficient antitubercular drugs. Despite the various drugs currently under evaluation, isoniazid is still the key and most effective component in all multi-therapeutic regimens recommended by the WHO. This paper describes the QSAR-oriented design, synthesis and in vitro antitubercular activity of several potent isoniazid derivatives (isonicotinoyl hydrazones and isonicotinoyl hydrazides) against H37Rv and two resistant Mtb strains. QSAR studies entailed RFs and ASNNs classification models, as well as MLR models. Strict validation procedures were used to guarantee the models' robustness and predictive ability. Lipophilicity was shown not to be relevant to explain the activity of these derivatives, whereas shorter N-N distances and lengthy substituents lead to more active compounds. Compounds I, 2, 4, 5 and 6, showed measured activities against H37Rv higher than INH (i.e., MIC <= 0.28 mu M), while compound 9 exhibited a six fold decrease in MIC against the katG (S315T) mutated strain, by comparison with INH (Le., 6.9 vs. 43.8 mu M). All compounds were ineffective against H37Rv(INH) (Delta katG), a strain with a full deletion of the katG gene, thus corroborating the importance of KatG in the activation of INH-based compounds. The most potent compounds were also shown not to be cytotoxic up to a concentration 500 times higher than MIC. (C) 2014 Elsevier Masson SAS. All rights reserved.