17 resultados para ferroelectrics, domains, domain walls
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The effects of the Miocene through Present compression in the Tagus Abyssal Plain are mapped using the most up to date available to scientific community multi-channel seismic reflection and refraction data. Correlation of the rift basin fault pattern with the deep crustal structure is presented along seismic line IAM-5. Four structural domains were recognized. In the oceanic realm mild deformation concentrates in Domain I adjacent to the Tore-Madeira Rise. Domain 2 is characterized by the absence of shortening structures, except near the ocean-continent transition (OCT), implying that Miocene deformation did not propagate into the Abyssal Plain, In Domain 3 we distinguish three sub-domains: Sub-domain 3A which coincides with the OCT, Sub-domain 3B which is a highly deformed adjacent continental segment, and Sub-domain 3C. The Miocene tectonic inversion is mainly accommodated in Domain 3 by oceanwards directed thrusting at the ocean-continent transition and continentwards on the continental slope. Domain 4 corresponds to the non-rifted continental margin where only minor extensional and shortening deformation structures are observed. Finite element numerical models address the response of the various domains to the Miocene compression, emphasizing the long-wavelength differential vertical movements and the role of possible rheologic contrasts. The concentration of the Miocene deformation in the transitional zone (TC), which is the addition of Sub-domain 3A and part of 3B, is a result of two main factors: (1) focusing of compression in an already stressed region due to plate curvature and sediment loading; and (2) theological weakening. We estimate that the frictional strength in the TC is reduced in 30% relative to the surrounding regions. A model of compressive deformation propagation by means of horizontal impingement of the middle continental crust rift wedge and horizontal shearing on serpentinized mantle in the oceanic realm is presented. This model is consistent with both the geological interpretation of seismic data and the results of numerical modelling.
Resumo:
Mesoporous carbon materials were prepared through template method approach using porous clay heterostructures (PCHs) as matrix and furfuryl alcohol as carbon precursor. Three PCHs prepared using amines with 8, 10 and 12 carbon atoms were used. The effect of several impregnation-polymerization cycles of the carbon precursor, the carbonization temperature and the need of a previous surface alumination were evaluated. The presence of two porosity domains was identified in all the carbon materials. These two domains comprise pores resulting from the carbonization of the polymer film formed in the inner structure of the PCH (domain I) and larger pores created by the clay particles aggregation (domain II). The predominance of the porosity associated to domain I or II can be achieved by choosing a specific amine to prepare the PCH matrix. Carbonization at 700 C led to the highest development of pores of domain I. In general, the second impregnation-polymerization cycle of furfuryl alcohol resulted in a small decrease of both types of porosity domains. Furthermore the previous acidification of the surface to create acidic sites proved to be unnecessary. The results showed the potential of PCHs as matrices to tailor the textural properties of carbons prepared by template mediated synthesis.
Resumo:
Wyner-Ziv (WZ) video coding is a particular case of distributed video coding, the recent video coding paradigm based on the Slepian-Wolf and Wyner-Ziv theorems that exploits the source correlation at the decoder and not at the encoder as in predictive video coding. Although many improvements have been done over the last years, the performance of the state-of-the-art WZ video codecs still did not reach the performance of state-of-the-art predictive video codecs, especially for high and complex motion video content. This is also true in terms of subjective image quality mainly because of a considerable amount of blocking artefacts present in the decoded WZ video frames. This paper proposes an adaptive deblocking filter to improve both the subjective and objective qualities of the WZ frames in a transform domain WZ video codec. The proposed filter is an adaptation of the advanced deblocking filter defined in the H.264/AVC (advanced video coding) standard to a WZ video codec. The results obtained confirm the subjective quality improvement and objective quality gains that can go up to 0.63 dB in the overall for sequences with high motion content when large group of pictures are used.
Resumo:
Wyner - Ziv (WZ) video coding is a particular case of distributed video coding (DVC), the recent video coding paradigm based on the Slepian - Wolf and Wyner - Ziv theorems which exploits the source temporal correlation at the decoder and not at the encoder as in predictive video coding. Although some progress has been made in the last years, WZ video coding is still far from the compression performance of predictive video coding, especially for high and complex motion contents. The WZ video codec adopted in this study is based on a transform domain WZ video coding architecture with feedback channel-driven rate control, whose modules have been improved with some recent coding tools. This study proposes a novel motion learning approach to successively improve the rate-distortion (RD) performance of the WZ video codec as the decoding proceeds, making use of the already decoded transform bands to improve the decoding process for the remaining transform bands. The results obtained reveal gains up to 2.3 dB in the RD curves against the performance for the same codec without the proposed motion learning approach for high motion sequences and long group of pictures (GOP) sizes.
Resumo:
Vários estudos demonstraram que os doentes com insuficiência cardíaca congestiva (ICC) têm um compromisso da qualidade de vida relacionada com a saúde (QVRS), tendo esta, nos últimos anos, vindo a tornar-se um endpoint primário quando se analisa o impacto do tratamento de situações crónicas como a ICC. Objectivos: Avaliar as propriedades psicométricas da versão portuguesa de um novo instrumento específico para medir a QVRS na ICC em doentes hospitalizados: o Kansas City Cardiomyopathy Questionnaire (KCCQ). População e Métodos: O KCCQ foi aplicado a uma amostra consecutiva de 193 doentes internados por ICC. Destes, 105 repetiram esta avaliação 3 meses após admissão hospitalar, não havendo eventos ocorridos durante este período de tempo. A idade era 64,4± 12,4 anos (entre 21 e 88), com 72,5% a pertencer ao sexo masculino, sendo a ICC de etiologia isquémica em 42%. Resultados: Esta versão do KCCQ foi sujeita a validação estatística semelhante à americana com a avaliação da fidelidade e validade. A fidelidade foi avaliada pela consistência interna dos domínios e dos somatórios, apresentando valores Alpha de Cronbach idênticos nos vários domínios e somatórios ( =0,50 a =0,94). A validade foi analisada pela convergência, pela sensibilidade às diferenças entre grupos e pela sensibilidade à alteração da condição clínica. Avaliou-se a validade convergente de todos os domínios relacionados com funcionalidade, pela relação verificada entre estes e uma medida de funcionalidade, a classificação da New York Heart Association (NYHA), tendo-se verificado correlações significativas (p<0,01), como medida para avaliar a funcionalidade em doentes com ICC. Efectuou-se uma análise de variância entre o domínio limitação física, os somatórios e as classes da NYHA, tendo-se encontrado diferenças estatisticamente significativas (F=23,4; F=36,4; F=37,4; p=0,0001), na capacidade de descriminação da gravidade da condição clínica. Foi realizada uma segunda avaliação em 105 doentes na consulta do 3º mês após a intervenção clínica, tendo-se observado alterações significativas nas médias dos domínios avaliados entre o internamento e a consulta (diferenças de 14,9 a 30,6 numa escala de 0-100), indicando que os domínios avaliados são sensíveis à mudança da condição clínica. A correlação interdimensões da qualidade de vida que compõe este instrumento é moderada, sugerindo dimensões independentes, apoiando a sua estrutura multifactorial e a adequabilidade desta medida para a sua avaliação. Conclusão: O KCCQ é um instrumento válido, sensível à mudança e específico para medir a QVRS numa população portuguesa com miocardiopatia dilatada e ICC. ABSTRACT - Several studies have shown that patients with congestive heart failure (CHF) have a compromised health-related quality of life (HRQL), and this, in recent years, has become a primary endpoint when considering the impact of treatment of chronic conditions such as CHF. Objectives: To evaluate the psychometric properties of the Portuguese version of a new specific instrument to measure HRQL in patients hospitalized for CHF: the Kansas City Cardiomyopathy Questionnaire (KCCQ). Methods: The KCCQ was applied to a sample of 193 consecutive patients hospitalized for CHF. Of these, 105 repeated the assessment 3 months after admission, with no events during this period. Mean age was 64.4±12.4 years (21-88), and 72.5% were 72.5% male. CHF was of ischemic etiology in 42% of cases. Results: This version of the KCCQ was subjected to statistical validation, with assessment of reliability and validity, similar to the American version. Reliability was assessed by the internal consistency of the domains and summary scores, which showed similar values of Cronbach alpha (0.50-0.94). Validity was assessed by convergence, sensitivity to differences between groups and sensitivity to changes in clinical condition. We evaluated the convergent validity of all domains related to functionality, through the relationship between them and a measure of functionality, the New York Heart Association (NYHA) classification. Significant correlations were found (p<0.01) for this measure of functionality in patients with CHF. Analysis of variance between the physical limitation domain, the summary scores and NYHA class was performed and statistically significant differences were found (F=23.4; F=36.4; F=37.4, p=0.0001) in the ability to discriminate severity of clinical condition. A second evaluation was performed on 105 patients at the 3-month follow-up outpatient appointment, and significant changes were observed in the mean scores of the domains assessed between hospital admission and the clinic appointment (differences from 14.9 to 30.6 on a scale of 0-100), indicating that the domains assessed are sensitive to changes in clinical condition. The correlation between dimensions of quality of life in the KCCQ is moderate, suggesting that the dimensions are independent, supporting the multifactorial nature of HRQL and the suitability of this measure for its evaluation. Conclusion: The KCCQ is a valid instrument, sensitive to change and a specific measure of HRQL in a population with dilated cardiomyopathy and CHF.
Resumo:
The crustal and lithospheric mantle structure at the south segment of the west Iberian margin was investigated along a 370 km long seismic transect. The transect goes from unthinned continental crust onshore to oceanic crust, crossing the ocean-continent transition (OCT) zone. The wide-angle data set includes recordings from 6 OBSs and 2 inland seismic stations. Kinematic and dynamic modeling provided a 2D velocity model that proved to be consistent with the modeled free-air anomaly data. The interpretation of coincident multi-channel near-vertical and wide-angle reflection data sets allowed the identification of four main crustal domains: (i) continental (east of 9.4 degrees W); (ii) continental thinning (9.4 degrees W-9.7 degrees W): (iii) transitional (9.7 degrees W-similar to 10.5 degrees W); and (iv) oceanic (west of similar to 10.5 degrees W). In the continental domain the complete crustal section of slightly thinned continental crust is present. The upper (UCC, 5.1-6.0 km/s) and the lower continental crust (LCC, 6.9-7.2 km/s) are seismically reflective and have intermediate to low P-wave velocity gradients. The middle continental crust (MCC, 6.35-6.45 km/s) is generally unreflective with low velocity gradient. The main thinning of the continental crust occurs in the thinning domain by attenuation of the UCC and the LCC. Major thinning of the MCC starts to the west of the LCC pinchout point, where it rests directly upon the mantle. In the thinning domain the Moho slope is at least 13 degrees and the continental crust thickness decreases seaward from 22 to 11 km over a similar to 35 km distance, stretched by a factor of 1.5 to 3. In the oceanic domain a two-layer high-gradient igneous crust (5.3-6.0 km/s; 6.5-7.4 km/s) was modeled. The intra-crustal interface correlates with prominent mid-basement, 10-15 km long reflections in the multi-channel seismic profile. Strong secondary reflected PmP phases require a first order discontinuity at the Moho. The sedimentary cover can be as thick as 5 km and the igneous crustal thickness varies from 4 to 11 km in the west, where the profile reaches the Madeira-Tore Rise. In the transitional domain the crust has a complex structure that varies both horizontally and vertically. Beneath the continental slope it includes exhumed continental crust (6.15-6.45 km/s). Strong diffractions were modeled to originate at the lower interface of this layer. The western segment of this transitional domain is highly reflective at all levels, probably due to dykes and sills, according to the high apparent susceptibility and density modeled at this location. Sub-Moho mantle velocity is found to be 8.0 km/s, but velocities smaller than 8.0 km/s confined to short segments are not excluded by the data. Strong P-wave wide-angle reflections are modeled to originate at depth of 20 km within the lithospheric mantle, under the eastern segment of the oceanic domain, or even deeper at the transitional domain, suggesting a layered structure for the lithospheric mantle. Both interface depths and velocities of the continental section are in good agreement to the conjugate Newfoundland margin. A similar to 40 km wide OCT having a geophysical signature distinct from the OCT to the north favors a two pulse continental breakup.
Resumo:
Magma flow in dykes is still not well understood; some reported magnetic fabrics are contradictory and the potential effects of exsolution and metasomatism processes on the magnetic properties are issues open to debate. Therefore, a long dyke made of segments with different thickness, which record distinct degrees of metasomatism, the Messejana-Plasencia dyke (MPD), was studied. Oriented dolerite samples were collected along several cross-sections and characterized by means of microscopy and magnetic analyses. The results obtained show that the effects of metasomatism on rock mineralogy are important, and that the metasomatic processes can greatly influence anisotropy degree and mean susceptibility only when rocks are strongly affected by metasomatism. Petrography, scanning electron microscopy (SEM) and bulk magnetic analyses show a high-temperature oxidation-exsolution event, experienced by the very early Ti-spinels, during the early stages of magma cooling, which was mostly observed in central domains of the thick dyke segments. Exsolution reduced the grain size of the magnetic carrier (multidomain to single domain transformation), thus producing composite fabrics involving inverse fabrics. These are likely responsible for a significant number of the 'abnormal' fabrics, which make the interpretation of magma flow much more complex. By choosing to use only the 'normal' fabric for magma flow determination, we have reduced by 50 per cent the number of relevant sites. In these sites, the imbrication angle of the magnetic foliation relative to dyke wall strongly suggests flow with end-members indicating vertical-dominated flow (seven sites) and horizontal-dominated flow (three sites).
Resumo:
The phase behaviour of a number of N-alkylimidazolium salts was studied using polarizing optical microscopy, differential scanning calorimetry and X-ray diffraction. Two of these compounds exhibit lamellar mesophases at temperatures above 50 degrees C. In these systems, the liquid crystalline behaviour may be induced at room temperature by shear. Sheared films of these materials, observed between crossed polarisers, have a morphology that is typical of (wet) liquid foams: they partition into dark domains separated by brighter (birefringent) walls, which are approximately arcs of circle and meet at "Plateau borders" with three or more sides. Where walls meet three at a time, they do so at approximately 120 degrees angles. These patterns coarsen with time and both T1 and T2 processes have been observed, as in foams. The time evolution of domains is also consistent with von Neumann's law. We conjecture that the bright walls are regions of high concentration of defects produced by shear, and that the system is dominated by the interfacial tension between these walls and the uniform domains. The control of self-organised monodomains, as observed in these systems, is expected to play an important role in potential applications.
Resumo:
Philosophical Magazine Letters Volume 88, Issue 9-10, 2008 Special Issue: Solid and Liquid Foams. In commemoration of Manuel Amaral Fortes
Resumo:
Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar
Resumo:
The conjugate margins system of the Gulf of Lion and West Sardinia (GLWS) represents a unique natural laboratory for addressing fundamental questions about rifting due to its landlocked situation, its youth, its thick sedimentary layers, including prominent palaeo-marker such as the MSC event, and the amount of available data and multidisciplinary studies. The main goals of the SARDINIA experiment, were to (i) investigate the deep structure of the entire system within the two conjugate margins: the Gulf of Lion and West Sardinia, (ii) characterize the nature of the crust, and (iii) define the geometry of the basin and provide important constrains on its genesis. This paper presents the results of P-wave velocity modelling on three coincident near-vertical reflection multi-channel seismic (MCS) and wide-angle seismic profiles acquired in the Gulf of Lion, to a depth of 35 km. A companion paper [part II Afilhado et al., 2015] addresses the results of two other SARDINIA profiles located on the oriental conjugate West Sardinian margin. Forward wide-angle modelling of both data sets confirms that the margin is characterised by three distinct domains following the onshore unthinned, 33 km-thick continental crust domain: Domain I is bounded by two necking zones, where the crust thins respectively from 30 to 20 and from 20 to 7 km over a width of about 170 km; the outermost necking is imprinted by the well-known T-reflector at its crustal base; Domain II is characterised by a 7 km-thick crust with anomalous velocities ranging from 6 to 7.5 km/s; it represents the transition between the thinned continental crust (Domain I) and a very thin (only 4-5 km) "atypical" oceanic crust (Domain III). In Domain II, the hypothesis of the presence of exhumed mantle is falsified by our results: this domain may likely consist of a thin exhumed lower continental crust overlying a heterogeneous, intruded lower layer. Moreover, despite the difference in their magnetic signatures, Domains II and III present the very similar seismic velocities profiles, and we discuss the possibility of a connection between these two different domains.
Resumo:
Geophysical data acquired on the conjugate margins system of the Gulf of Lion and West Sardinia (GLWS) is unique in its ability to address fundamental questions about rifting (i.e. crustal thinning, the nature of the continent-ocean transition zone, the style of rifting and subsequent evolution, and the connection between deep and surface processes). While the Gulf of Lion (GoL) was the site of several deep seismic experiments, which occurred before the SARDINIA Experiment (ESP and ECORS Experiments in 1981 and 1988 respectively), the crustal structure of the West Sardinia margin remains unknown. This paper describes the first modeling of wide-angle and near-vertical reflection multi-channel seismic (MCS) profiles crossing the West Sardinia margin, in the Mediterranean Sea. The profiles were acquired, together with the exact conjugate of the profiles crossing the GoL, during the SARDINIA experiment in December 2006 with the French R/V L'Atalante. Forward wide-angle modeling of both data sets (wide-angle and multi-channel seismic) confirms that the margin is characterized by three distinct domains following the onshore unthinned, 26 km-thick continental crust : Domain V, where the crust thins from 26 to 6 km in a width of about 75 km; Domain IV where the basement is characterized by high velocity gradients and lower crustal seismic velocities from 6.8 to 7.25 km/s, which are atypical for either crustal or upper mantle material, and Domain III composed of "atypical" oceanic crust.The structure observed on the West Sardinian margin presents a distribution of seismic velocities that is symmetrical with those observed on the Gulf of Lion's side, except for the dimension of each domain and with respect to the initiation of seafloor spreading. This result does not support the hypothesis of simple shear mechanism operating along a lithospheric detachment during the formation of the Liguro-Provencal basin.
Resumo:
The structure and nature of the crust underlying the Santos Basin-São Paulo Plateau System (SSPS), in the SE Brazilian margin, are discussed based on five wide-angle seismic profiles acquired during the Santos Basin (SanBa) experiment in 2011. Velocity models allow us to precisely divide the SSPS in six domains from unthinned continental crust (Domain CC) to normal oceanic crust (Domain OC). A seventh domain (Domain D), a triangular shape region in the SE of the SSPS, is discussed by Klingelhoefer et al. (2014). Beneath the continental shelf, a similar to 100km wide necking zone (Domain N) is imaged where the continental crust thins abruptly from similar to 40km to less than 15km. Toward the ocean, most of the SSPS (Domains A and C) shows velocity ranges, velocity gradients, and a Moho interface characteristic of the thinned continental crust. The central domain (Domain B) has, however, a very heterogeneous structure. While its southwestern part still exhibits extremely thinned (7km) continental crust, its northeastern part depicts a 2-4km thick upper layer (6.0-6.5km/s) overlying an anomalous velocity layer (7.0-7.8km/s) and no evidence of a Moho interface. This structure is interpreted as atypical oceanic crust, exhumed lower crust, or upper continental crust intruded by mafic material, overlying either altered mantle in the first two cases or intruded lower continental crust in the last case. The deep structure and v-shaped segmentation of the SSPS confirm that an initial episode of rifting occurred there obliquely to the general opening direction of the South Atlantic Central Segment.
Resumo:
The rheological and structural characteristics of acetoxypropylcellulose (APC) nematic melt are studied at shear rates ranging from 10 s(-1) to 1000 s(-1) which are relevant to extrusion based processes. APC shows a monotonic shear thinning behavior over the range of shear rates tested. The negative extrudate-swell shows a minimum when a critical shear rate (gamma) over dot(c) is reached. For shear rates smaller than (gamma) over dot(c), the flow-induced texture consists of two set of bands aligned parallel and normal to the flow direction. At shear rates larger than (gamma) over dot(c), the flow induced texture is reminiscent of a 2 fluids structure. Close to the shearing walls, domains elongated along the flow direction and stacked along the vorticity are imaged with POM, whereas SALS patterns indicate that the bulk of the sheared APC is made of elliptical domains oriented along the vorticity. No full nematic alignment is achieved at the largest shear rate tested. Below (gamma) over dot(c), the stress relaxation is described by a stretched exponential. Above (gamma) over dot(c), the stress relaxation is described by a fast and a slow process. The latter coincides with the growth of normal bands thicknesses, as the APC texture after flow cessation consists of two types of bands with parallel and normal orientations relative to the flow direction. Both bands thicknesses do not depend on the applied shear rate, in contrast to their orientation. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
P and S receiver functions (PRF and SRF) from 19 seismograph stations in the Gibraltar Arc and the Iberian Massif reveal new details of the regional deep structure. Within the high-velocity mantle body below southern Spain the 660-km discontinuity is depressed by at least 20 km. The Ps phase from the 410-km discontinuity is missing at most stations in the Gibraltar Arc. A thin (similar to 50 km) low-S-velocity layer atop the 410-km discontinuity is found under the Atlantic margin. At most stations the S410p phase in the SRFs arrives 1.0-2.5 s earlier than predicted by IASP91 model, but, for the propagation paths through the upper mantle below southern Spain, the arrivals of S410p are delayed by up to +1.5 s. The early arrivals can be explained by elevated Vp/Vs ratio in the upper mantle or by a depressed 410-km discontinuity. The positive residuals are indicative of a low (similar to 1.7 versus similar to 1.8 in IASP91) Vp/Vs ratio. Previously, the low ratio was found in depleted lithosphere of Precambrian cratons. From simultaneous inversion of the PRFs and SRFs we recognize two types of the mantle: 'continental' and 'oceanic'. In the 'continental' upper mantle the S-wave velocity in the high-velocity lid is 4.4-4.5 km s(-1), the S-velocity contrast between the lid and the underlying mantle is often near the limit of resolution (0.1 km s(-1)), and the bottom of the lid is at a depth reaching 90 100 km. In the 'oceanic' domain, the S-wave velocities in the lid and the underlying mantle are typically 4.2-4.3 and similar to 4.0 km s(-1), respectively. The bottom of the lid is at a shallow depth (around 50 km), and at some locations the lid is replaced by a low S-wave velocity layer. The narrow S-N-oriented band of earthquakes at depths from 70 to 120 km in the Alboran Sea is in the 'continental' domain, near the boundary between the 'continental' and 'oceanic' domains, and the intermediate seismicity may be an effect of ongoing destruction of the continental lithosphere.