11 resultados para energy use
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
O aproveitamento da radiação solar representa um recurso energético extremamente benéfico, quer no âmbito energético, quer no ambiental, contribuindo para a redução das emissões de gases nocivos para a atmosfera. Portugal apresenta uma radiação solar total média anual bastante elevada, colocando-se entre um dos países que apresentam melhores potencialidades para o aproveitamento da energia solar. A torre solar consiste numa estufa com uma determinada extensão com uma chaminé no seu centro e o seu funcionamento baseia-se no aquecimento do ar que circula por baixo da estufa, sendo expelido pela chaminé. Nesta tese é abordado o tema da torre solar e os princípios físicos inerentes ao seu funcionamento. Foi estudado e descrito o método de cálculo de diversos parâmetros e resultados associados ao funcionamento da torre solar. Elaborou-se uma folha de cálculo para obtenção dos valores de simulações de torres com diversas dimensões, tecendo-se conclusões quanto aos resultados e às variações dos mesmos, consoante as alterações de dimensão dos elementos que a constituem. Foram descritos os vários elementos que constituem uma torre solar, bem como as suas características e tipologias. Efectuou-se um estudo com aplicação a um caso real, para se tecer algumas conclusões e comentários relativamente à viabilidade de uma torre solar para a situação em causa. Por fim, com base em todo o trabalho desenvolvido e abordado, foi possível tecer-se algumas conclusões quanto à viabilidade das torres solares.
Resumo:
Since industrialization and the formation of larger urban centers in the nineteenth century, pollution of the environment was always present in daily life in various ways, namely in the form of light. Light pollution can cause various consequences, both for humans and for their ecosystem, producing effects on environmental, social, economic and scientific level. In Portugal, the lighting is responsible for 3% of total electricity consumption, energy costs are in some cases more than 50% towards the costs incurred by municipalities with energy, checking-in recent years a trend similar to that improvement of illumination levels in the region (about 4 to 5% per year). Proper use of lighting brings many benefits both to the citizen and environment, since greater energy efficiency can contribute to reducing CO2 emissions, energy costs, as well as to decrease the use of resources not-renewable and/or contamination of renewable resources, which can occurs in the process of obtaining electricity. The present study has a main goal to analyze the illuminance levels associated to the public lighting of the village of Vialonga, Vila Franca de Xira (Portugal), to verify if it is efficient. The aim is also to relate the efficiency of street lighting with the existence of light pollution.
Resumo:
The purpose of this paper is to present and discuss a general HV topology of the solid-state Marx modulator, for unipolar or bipolar generation connected with a step-up transformer to increase the output voltage applied to a resistive load. Due to the use of an output transformer, discussion about the reset of the transformer is made to guarantee zero average voltage applied to the primary. It is also discussed the transformer magnetizing energy recovering back to the energy storage capacitors. Simulation results for a circuit that generates 100 kV pulses using 1000 V semiconductors are presented and discussed regarding the voltage and current stress on the semiconductors and result obtained.
Resumo:
This paper presents a step-up micro-power converter for solar energy harvesting applications. The circuit uses a SC voltage tripler architecture, controlled by an MPPT circuit based on the Hill Climbing algorithm. This circuit was designed in a 0.13 mu m CMOS technology in order to work with an a-Si PV cell. The circuit has a local power supply voltage, created using a scaled down SC voltage tripler, controlled by the same MPPT circuit, to make the circuit robust to load and illumination variations. The SC circuits use a combination of PMOS and NMOS transistors to reduce the occupied area. A charge re-use scheme is used to compensate the large parasitic capacitors associated to the MOS transistors. The simulation results show that the circuit can deliver a power of 1266 mu W to the load using 1712 mu W of power from the PV cell, corresponding to an efficiency as high as 73.91%. The simulations also show that the circuit is capable of starting up with only 19% of the maximum illumination level.
Resumo:
This paper, reports experimental work on the use of new heterogeneous solid basic catalysts for biodiesel production: double oxides of Mg and Al, produced by calcination, at high temperature, of MgAl lamellar structures, the hydrotalcites (HT). The most suitable catalyst system studied are hydrotalcite Mg:Al 2:1 calcinated at 507 degrees C and 700 degrees C, leading to higher values of FAME also in the second reaction stage. One of the prepared catalysts resulted in 97.1% Fatty acids methyl esters (FAME) in the 1st reaction step, 92.2% FAME in the 2nd reaction step and 34% FAME in the 3rd reaction step. The biodiesel obtained in the transesterification reaction showed composition and quality parameters within the limits specified by the European Standard EN 14214. 2.5% wt catalyst/oil and a molar ratio methanol:oil of 9:1 or 12:1 at 60 -65 degrees C and 4 h of reaction time are the best operating conditions achieved in this study. This study showed the potential of Mg/Al hydrotalcites as heterogeneous catalysts for biodiesel production. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Glucose sensing is an issue with great interest in medical and biological applications. One possible approach to glucose detection takes advantage of measuring changes in fluorescence resonance energy transfer (FRET) between a fluorescent donor and an acceptor within a protein which undergoes glucose-induced changes in conformation. This demands the detection of fluorescent signals in the visible spectrum. In this paper we analyzed the emission spectrum obtained from fluorescent labels attached to a protein which changes its conformation in the presence of glucose using a commercial spectrofluorometer. Different glucose nanosensors were used to measure the output spectra with fluorescent signals located at the cyan and yellow bands of the spectrum. A new device is presented based on multilayered a-SiC:H heterostructures to detect identical transient visible signals. The transducer consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructure optimized for the detection of the fluorescence resonance energy transfer between fluorophores with excitation in the violet (400 nm) and emissions in the cyan (470 nm) and yellow (588 nm) range of the spectrum. Results show that the device photocurrent signal measured under reverse bias and using appropriate steady state optical bias, allows the separate detection of the cyan and yellow fluorescence signals presented.
Resumo:
In this paper, we present a multilayer device based on a-Si:H/a-SiC:H that operates as photodetector and optical filter. The use of such device in protein detection applications is relevant in Fluorescence Resonance Energy Transfer (FRET) measurements. This method demands the detection of fluorescent signals located at specific wavelengths bands in the visible part of the electromagnetic spectrum. The device operates in the visible range with a selective sensitivity dependent on electrical and optical bias. Several nanosensors were tested with a commercial spectrophotometer to assess the performance of FRET signals using glucose solutions of different concentrations. The proposed device was used to demonstrate the possibility of FRET signals detection, using visible signals of similar wavelength and intensity. The device sensitivity was tuned to enhance the wavelength band of interest using steady state optical bias at 400 nm. Results show the ability of the device to detect signals in this range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs), which obtain their fuel from the grid by charging a battery, are set to be introduced into the mass market and expected to contribute to oil consumption reduction. This research is concerned with studying the potential impacts on the electric utilities of large-scale adoption of plug-in electric vehicles from the perspective of electricity demand, fossil fuels use, CO2 emissions and energy costs. Simulations were applied to the Portuguese case study in order to analyze what would be the optimal recharge profile and EV penetration in an energy-oriented, an emissions-oriented and a cost-oriented objective. The objectives considered were: The leveling of load profiles, minimization of daily emissions and minimization of daily wholesale costs. Almost all solutions point to an off-peak recharge and a 50% reduction in daily wholesale costs can be verified from a peak recharge scenario to an off-peak recharge for a 2 million EVs in 2020. A 15% improvement in the daily total wholesale costs can be verified in the costs minimization objective when compared with the off-peak scenario result.
Resumo:
Most of small islands around the world today, are dependent on imported fossil fuels for the majority of their energy needs especially for transport activities and electricity production. The use of locally renewable energy resources and the implementation of energy efficiency measures could make a significant contribution to their economic development by reducing fossil fuel imports. An electrification of vehicles has been suggested as a way to both reduce pollutant emissions and increase security of supply of the transportation sector by reducing the dependence on oil products imports and facilitate the accommodation of renewable electricity generation, such as wind and, in the case of volcanic islands like Sao Miguel (Azores) of the geothermal energy whose penetration has been limited by the valley electricity consumption level. In this research, three scenarios of EV penetration were studied and it was verified that, for a 15% LD fleet replacement by EVs with 90% of all energy needs occurring during the night, the accommodation of 10 MW of new geothermal capacity becomes viable. Under this scenario, reductions of 8% in electricity costs, 14% in energy, 23% in fossil fuels use and CO2 emissions for the transportation and electricity production sectors could be expected.
Resumo:
This paper presents the project of a mobile cockpit system (MCS) for smartphones, which provides assistance to electric bicycle (EB) cyclists in smart cities' environment. The presented system introduces a mobile application (MCS App) with the goal to provide useful personalized information to the cyclist related to the EB's use, including EB range prediction considering the intended path, management of the cycling effort performed by the cyclist, handling of the battery charging process, and the provisioning of information regarding available public transport. This work also introduces the EB cyclist profile concept, which is based on historical data analysis previously stored in a database and collected from mobile devices' sensors. From the tests performed, the results show the importance of route guidance, taking into account the energy savings. The results also show significant changes on range prediction based on user and route taken. It is important to say that the proposed system can be used for all bicycles in general.