3 resultados para endocrine disrupters

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assessment of surface water nanofiltration (NF) for the removal of endocrine disruptors (EDs) Nonylphenol Ethoxylate (IGEPAL), 4-Nonylphenol (NP) and 4-Octylphenol (OP) was carried out with three commercial NF membranes - NF90, NF200, NF270. The permeation experiments were conducted in laboratory flat-cell units of 13.2 x 10(-4) m(2) of surface area and in a DSS Lab-unit M20 with a membrane surface area of 0.036 m2. The membranes hydraulic permeabilities ranged from 3.7 to 15.6 kg/h/m(2)/bar and the rejection coefficients to NaCl, Na2SO4 and Glucose are for NF90: 97%, 99% and 97%, respectively; for NF200: 66%, 98% and 90%, respectively and for NF270: 48%, 94% and 84%, respectively. Three sets of nanofiltration experiments were carried out: i) NF of aqueous model solutions of NP, IGEPAL and OP running in total recirculation mode; ii) NF of surface water from Rio Sado (Settibal, Portugal) running in concentration mode; iii) NF of surface water from Rio Sado inoculated with NP, IGEPAL and OP running in concentration mode. The results of model solutions experiments showed that the EDs rejection coefficients are approximately 100% for all the membranes. The results obtained for the surface water showed that the rejection coefficients to natural organic Matter (NOM) are 94%, 82% and 78% for NF90, NF200 and NF 270 membranes respectively, with and without inoculation of EDs. The rejection coefficients to EDs in surface water with and without inoculation of EDs are 100%, showing that there is a fraction of NOM of high molecular weight that retains the EDs in the concentrate and that there is a fraction of NOM of low molecular weight that permeates through the NF membranes free of EDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endocrine disrupting chemicals (EDCs) are exogenous agents that have the ability to interfere with/or mimic estrogenic hormones and, therefore can simultaneously and differentially trigger specific signaling pathways responsible for the nature and magnitude of biological responses in diverse cell types. Human exposure to EDCs, particularly at low-doses, is ubiquitous, persistent and occurs in complex mixtures. These compounds can bioaccumulate in lipid compartments of tissues forming a mixed “body burden” of contaminants of different origins. Although the independent action of chemicals has been considered the main principle in EDCs mixture toxicity, several effects cannot be predicted when analyzing single compounds individually. Based in a revision of the literature, focused in studies that evaluated EDCs mixtures, we hypothesize the scenario of a pregnant woman environmentally exposed to three different EDCs as a potential real scenario of human exposure supported by data describing where exposure to these compounds occur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Obesity is associated with increased atherogenesis through alterations in lipids, among other potential factors. Some of those abnormalities might be mediated by insulin resistance (IR). Aims: To compare lipid and apolipoprotein profile between lean and obese women; to evaluate the influence of IR on lipid and apolipoprotein profile, in obese women. Methods: We studied 112 obese and 100 normal-weight premenopausal women without known cardiovascular disease. Both groups were characterized for anthropometrics and a fasting blood sample was collected for assessment of glucose, insulin, triglycerides, cholesterol (total, LDL and HDL), and apolipoproteins A-I, A-II, B, C-II, C-III, and E; IR was assessed by the homeostatic model assessment (HOMA-IR). We compared lipids between obese and lean women; we looked for correlation of those levels with anthropometrics and IR (independently from anthropometrics) in obese women. Results: Obese women were characterized by mean age=34.6±8.3 years, BMI=43.6±7.9 kg/m2, waist circumference (Wc)=117.5±15.1 cm, and HOMA-IR=4.28±3.5. Lean women (age=34.2±8.3 years, BMI=21.4±1.7 kg/m2, Wc=71.7±5.8 cm, and HOMA-IR=1.21±0.76) presented with significantly lower levels of total cholesterol (P=0.001), LDL-cholesterol (P<0.001), and triglycerides (P<0.001); they presented higher levels of HDL-cholesterol (P<0.001), Apo A-I (P<0.001) and Apo A-II (P=0.037). HOMA-IR showed no significant association with apolipoproteins. HOMA-IR was inversely associated with HDL-cholesterol (P=0.048; r=−0.187) but that association disappeared when we adjusted for waist circumference. Only triglycerides were directly associated with HOMA-IR (P<0.001; r=0.343) independently from anthropometrics. Conclusion: We confirm that obese women present worst lipid and apolipoprotein profile. However, with the exception for triglycerides, insulin resistance per se does not play a major role in lipid and apolipoprotein abnormalities observed in obese women.