13 resultados para end user computing application streaming horizon workspace portalvmware view
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Thesis submitted in the fulfilment of the requirements for the Degree of Master in Electronic and Telecomunications Engineering
Resumo:
Data analytic applications are characterized by large data sets that are subject to a series of processing phases. Some of these phases are executed sequentially but others can be executed concurrently or in parallel on clusters, grids or clouds. The MapReduce programming model has been applied to process large data sets in cluster and cloud environments. For developing an application using MapReduce there is a need to install/configure/access specific frameworks such as Apache Hadoop or Elastic MapReduce in Amazon Cloud. It would be desirable to provide more flexibility in adjusting such configurations according to the application characteristics. Furthermore the composition of the multiple phases of a data analytic application requires the specification of all the phases and their orchestration. The original MapReduce model and environment lacks flexible support for such configuration and composition. Recognizing that scientific workflows have been successfully applied to modeling complex applications, this paper describes our experiments on implementing MapReduce as subworkflows in the AWARD framework (Autonomic Workflow Activities Reconfigurable and Dynamic). A text mining data analytic application is modeled as a complex workflow with multiple phases, where individual workflow nodes support MapReduce computations. As in typical MapReduce environments, the end user only needs to define the application algorithms for input data processing and for the map and reduce functions. In the paper we present experimental results when using the AWARD framework to execute MapReduce workflows deployed over multiple Amazon EC2 (Elastic Compute Cloud) instances.
Resumo:
The study of biosignals has had a transforming role in multiple aspects of our society, which go well beyond the health sciences domains to which they were traditionally associated with. While biomedical engineering is a classical discipline where the topic is amply covered, today biosignals are a matter of interest for students, researchers and hobbyists in areas including computer science, informatics, electrical engineering, among others. Regardless of the context, the use of biosignals in experimental activities and practical projects is heavily bounded by the cost, and limited access to adequate support materials. In this paper we present an accessible, albeit versatile toolkit, composed of low-cost hardware and software, which was created to reinforce the engagement of different people in the field of biosignals. The hardware consists of a modular wireless biosignal acquisition system that can be used to support classroom activities, interface with other devices, or perform rapid prototyping of end-user applications. The software comprehends a set of programming APIs, a biosignal processing toolbox, and a framework for real time data acquisition and postprocessing. (C) 2014 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The emergence of smartphones with Wireless LAN (WiFi) network interfaces brought new challenges to application developers. The expected increase of users connectivity will impact their expectations for example on the performance of background applications. Unfortunately, the number and breadth of the studies on the new patterns of user mobility and connectivity that result from the emergence of smartphones is still insufficient to support this claim. This paper contributes with preliminary results on a large scale study of the usage pattern of about 49000 devices and 31000 users who accessed at least one access point of the eduroam WiFi network on the campuses of the Lisbon Polytechnic Institute. Results confirm that the increasing number of smartphones resulted in significant changes to the pattern of use, with impact on the amount of traffic and users connection time.
Resumo:
Projeto para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
Workflows have been successfully applied to express the decomposition of complex scientific applications. This has motivated many initiatives that have been developing scientific workflow tools. However the existing tools still lack adequate support to important aspects namely, decoupling the enactment engine from workflow tasks specification, decentralizing the control of workflow activities, and allowing their tasks to run autonomous in distributed infrastructures, for instance on Clouds. Furthermore many workflow tools only support the execution of Direct Acyclic Graphs (DAG) without the concept of iterations, where activities are executed millions of iterations during long periods of time and supporting dynamic workflow reconfigurations after certain iteration. We present the AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic) model of computation, based on the Process Networks model, where the workflow activities (AWA) are autonomic processes with independent control that can run in parallel on distributed infrastructures, e. g. on Clouds. Each AWA executes a Task developed as a Java class that implements a generic interface allowing end-users to code their applications without concerns for low-level details. The data-driven coordination of AWA interactions is based on a shared tuple space that also enables support to dynamic workflow reconfiguration and monitoring of the execution of workflows. We describe how AWARD supports dynamic reconfiguration and discuss typical workflow reconfiguration scenarios. For evaluation we describe experimental results of AWARD workflow executions in several application scenarios, mapped to a small dedicated cluster and the Amazon (Elastic Computing EC2) Cloud.
Resumo:
Although the computational power of mobile devices has been increasing, it is still not enough for some classes of applications. In the present, these applications delegate the computing power burden on servers located on the Internet. This model assumes an always-on Internet connectivity and implies a non-negligible latency. The thesis addresses the challenges and contributions posed to the application of a mobile collaborative computing environment concept to wireless networks. The goal is to define a reference architecture for high performance mobile applications. Current work is focused on efficient data dissemination on a highly transitive environment, suitable to many mobile applications and also to the reputation and incentive system available on this mobile collaborative computing environment. For this we are improving our already published reputation/incentive algorithm with knowledge from the usage pattern from the eduroam wireless network in the Lisbon area.
Resumo:
Physical computing has spun a true global revolution in the way in which the digital interfaces with the real world. From bicycle jackets with turn signal lights to twitter-controlled christmas trees, the Do-it-Yourself (DiY) hardware movement has been driving endless innovations and stimulating an age of creative engineering. This ongoing (r)evolution has been led by popular electronics platforms such as the Arduino, the Lilypad, or the Raspberry Pi, however, these are not designed taking into account the specific requirements of biosignal acquisition. To date, the physiological computing community has been severely lacking a parallel to that found in the DiY electronics realm, especially in what concerns suitable hardware frameworks. In this paper, we build on previous work developed within our group, focusing on an all-in-one, low-cost, and modular biosignal acquisition hardware platform, that makes it quicker and easier to build biomedical devices. We describe the main design considerations, experimental evaluation and circuit characterization results, together with the results from a usability study performed with volunteers from multiple target user groups, namely health sciences and electrical, biomedical, and computer engineering. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.
Resumo:
Floating-point computing with more than one TFLOP of peak performance is already a reality in recent Field-Programmable Gate Arrays (FPGA). General-Purpose Graphics Processing Units (GPGPU) and recent many-core CPUs have also taken advantage of the recent technological innovations in integrated circuit (IC) design and had also dramatically improved their peak performances. In this paper, we compare the trends of these computing architectures for high-performance computing and survey these platforms in the execution of algorithms belonging to different scientific application domains. Trends in peak performance, power consumption and sustained performances, for particular applications, show that FPGAs are increasing the gap to GPUs and many-core CPUs moving them away from high-performance computing with intensive floating-point calculations. FPGAs become competitive for custom floating-point or fixed-point representations, for smaller input sizes of certain algorithms, for combinational logic problems and parallel map-reduce problems. © 2014 Technical University of Munich (TUM).
Resumo:
Workflows have been successfully applied to express the decomposition of complex scientific applications. However the existing tools still lack adequate support to important aspects namely, decoupling the enactment engine from tasks specification, decentralizing the control of workflow activities allowing their tasks to run in distributed infrastructures, and supporting dynamic workflow reconfigurations. We present the AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic) model of computation, based on Process Networks, where the workflow activities (AWA) are autonomic processes with independent control that can run in parallel on distributed infrastructures. Each AWA executes a task developed as a Java class with a generic interface allowing end-users to code their applications without low-level details. The data-driven coordination of AWA interactions is based on a shared tuple space that also enables dynamic workflow reconfiguration. For evaluation we describe experimental results of AWARD workflow executions in several application scenarios, mapped to the Amazon (Elastic Computing EC2) Cloud.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Redes de Comunicação e Multimédia
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
Relatório de estágio apresentado à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Audiovisual e Multimédia.