6 resultados para domestic sewage sludge
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
O estágio desenvolvido na empresa de construção Manuel da Graça Peixito, incidiu sobre Direcção e Gestão de Obra na execução de um projecto de reconversão urbanística a aplicar na AUGI 42 localizada no Casal do Sapo em Sesimbra. As áreas urbanas de génese ilegal, denominadas de AUGI, surgiram no inicio da década de 60, como um fenómeno que surgiu de forma a colmatar a carência no parque habitacional das periferias das grandes áreas metropolitanas do território nacional. O ambiente urbano gerado pela existência das AUGI, muitas vezes de proporções de grande dimensão, evidencia inúmeras carências e problemas a níveis sociais, económicos, urbanísticos e legais. A gestão de obra é uma actividade essencial na execução da obra e no planeamento de todas as tarefas a realizar com o melhor tratamento económico e financeiro. A direcção de obra tem como principais funções a selecção de recursos humanos, escolha e montagem dos órgãos de apoio logístico, a aquisição atempada e negociação de materiais. O Gestor e Director de Obra é colocado num ciclo operacional de optimização de recursos e eficiências, em que as duas funções, gestão e direcção de obra, são complementares e a abordagem do contexto interactivo do controlo da obra, em termos da produção, da gestão económica e financeira, da gestão do tempo, do cumprimento das normas de saúde e segurança no trabalho e no assegurar da qualidade, são claramente identificadas, enquanto veículo indispensável do cumprimento do contrato de empreitada. O processo de reconversão urbanística aplicado na AUGI 42 teve como estrutura de proposta a seguinte base: primeiro na recolha de dados relativo à AUGI 42 e na definição de um planeamento do faseamento numa estratégia de execução da empreitada; segundo na constituição e caracterização da execução de variadas infra-estruturas (rede de drenagem de esgotos domésticos e pluviais, rede de abastecimento de águas, rede de telecomunicações, rede eléctrica, rede de gás, rede viária e arranjos de espaços exteriores). Este processo e consequente proposta surgem como um contributo fundamental na melhoria da qualidade de vida das populações, como também da funcionalidade do sistema urbano que compõe as AUGI.
Resumo:
Trabalho de Dissertação de Natureza Científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Hidráulica
Resumo:
Composting is an important process of solid waste management and it can be used for treatment of a variety of different wastes (green waste, household waste, sewage sludge and more). This process aims to: 1. Reduce the volumes of waste and; 2. Create a valuable product which can be recycled as a soil amendment in agriculture and gardening. A natural self-heating process involving the biological degradation of organic matter under aerobic conditions. The handling of waste and compost is responsible for the release of airborne microorganisms and their compounds in the air. Possible contaminants: a) Dust; b) Mesophilic and thermophilic microorganisms; c) Volatile organic compounds; d) Endotoxins and mycotoxins…. Aim: assess exposure/contamination to: a) Volatile organic compounds (VOCs); b) Particulate matter (PM); c) Fungi. In a composting plant located in Lisbon. An additional goal was to identify the workplace with higher level of contamination. In a totally indoor composting plant. The composting operations consisted: 1º Waste already sorted is unloaded in a reception area; 2º Pretreatment - remove undesirable materials from the process (glass, rocks, plastics, metals…); 3º Anaerobic digestion; 4º Dehydration; 5º Open composting with forced aeration. All the process takes thirteen weeks.
Resumo:
The concerns on metals in urban wastewater treatment plants (WWTPs) are mainly related to its contents in discharges to environment, namely in the final effluent and in the sludge produced. In the near future, more restrictive limits will be imposed to final effluents, due to the recent guidelines of the European Water Framework Directive (EUWFD). Concerning the sludge, at least seven metals (Cd, Cr, Cu, Hg, Ni, Pb and Zn) have been regulated in different countries, four of which were classified by EUWFD as priority substances and two of which were also classified as hazardous substances. Although WWTPs are not designed to remove metals, the study of metals behaviour in these systems is a crucial issue to develop predictive models that can help more effectively the regulation of pre-treatment requirements and contribute to optimize the systems to get more acceptable metal concentrations in its discharges. Relevant data have been published in the literature in recent decades concerning the occurrence/fate/behaviour of metals in WWTPs. However, the information is dispersed and not standardized in terms of parameters for comparing results. This work provides a critical review on this issue through a careful systematization, in tables and graphs, of the results reported in the literature, which allows its comparison and so its analysis, in order to conclude about the state of the art in this field. A summary of the main consensus, divergences and constraints found, as well as some recommendations, is presented as conclusions, aiming to contribute to a more concerted action of future research. © 2015, Islamic Azad University (IAU).
Resumo:
In this paper the viability of an integrated wavelength optical filter and photodetector for visible light communication (VLC) is discussed. The proposed application uses indoor warm light lamps lighting accomplished by ultra-bright light-emitting diodes (LEDs) pulsed at frequencies higher than the ones perceived by the human eye. The system was analyzed at two different wavelengths in the visible spectrum (430 nm and 626 nm) with variable optical intensities. The signals were transmitted into free space and measured using a multilayered photodetector based on a-SiC:H/a-Si:H. The detector works as an optical filter with controlled wavelength sensitivity through the use of optical bias. The output photocurrent was measured for different optical intensities of the transmitted optical signal and the extent of each signal was tested. The influence of environmental fluorescent lighting was also analysed in order to test the strength of the system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The market for emulsion polymers (latexes) is large and growing at the expense of other manufacturing processes that emit higher amounts of volatile organic solvents. The paint industry is not an exception and solvent-borne paints have been gradually substituted by aqueous paints. In their life-cycle, much of the aqueous paint used for architectural or decorative purposes will eventually be discharged into wastewater treatment facilities, where its polymeric nanoparticles (mainly acrylic and styrene-acrylic) can work as xenobiotics to the microbial communities present in activated sludge. It is well established that these materials are biocompatible at macroscopic scale. But is their behaviour the same at nanoscale? What happens to the polymeric nanoparticles during the activated sludge process? Do nanoparticles agregate and are discharged together with the sludge or remain in emulsion? How do microorganisms interact with these nanoparticles? Are nanoparticles degradated by them? Are they adsorbed? Are these nanoparticles toxic to the microbial community? To study the influence of these xenobiotics in the activated sludge process, an emulsion of cross-linked poly(butyl methacrylate) nanoparticles of ca. 50 nm diameter was produced and used as model compound. Activated sludge from a wastewater treatment plant was tested by the OCDE’s respiration inhibition test using several concentrations of PBMA nanoparticles. Particle aggregation was followed by Dynamic Light Scattering and microorganism surfaces were observed by Atomic Force Microscopy. Using sequential batch reactors (SBRs) and continuous reactors, both inoculated with activated sludge, the consumption of carbon, ammonia, nitrite and nitrate was monitored and compared, in the presence and absence of nanoparticles. No particles were detected in all treated waters by Dynamic Light Scattering. This can either mean that microorganisms can efficiently remove all polymer nanoparticles or that nanoparticles tend to aggregate and be naturally removed by precipitation. Nevertheless respiration inhibition tests demonstrated that microorganisms consume more oxygen in the presence of nanoparticles, which suggests a stress situation. It was also observed a slight decrease in the efficiency of nitrification in the presence of nanoparticles. AFM images showed that while the morphology of some organisms remained the same both in the presence and absence of nanoparticles, others assumed a rough surface with hilly like shapes of ca. 50 nm when exposed to nanoparticles. Nanoparticles are thus likely to be either incorporated or adsorbed at the surface of some organisms, increasing the overall respiration rate and decreasing nitrification efficiency. Thus, despite its biocompatibility at macroscopic scale, PBMA is likely to be no longer innocuous at nanoscale.