5 resultados para digestive enzyme activity
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Glucose 2-oxidase (pyranose oxidase, pyranose: oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor catalyses the oxidation of D-glucose at carbon 2 in the presence of molecular O(2) producing D-glucosone (2-keto-glucose and D-arabino-2-hexosulose) and H(2)O(2). It was used to convert D-glucose into D-glucosone at moderate pressures (i.e. up to 150 bar) with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, [enzyme], [glucose], pH, temperature, nature of fluid and the presence of catalase. Glucose 2-oxidase was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. The rate of bioconversion of D-glucose increased with the pressure since an increase in the pressure with compressed air resulted in higher rates of conversion. On the other hand, the presence of catalase increased the rate of reaction which strongly suggests that H(2)O(2) acted as inhibitor for this reaction. The rate of bioconversion of D-glucose by glucose 2-oxidase in the presence of either nitrogen or supercritical CO(2) at 110 bar was very low compared with the use of compressed air at the same pressure. The optimum temperature (55 degrees C) and pH (5.0) of D-glucose bioconversion as well as kinetic parameters for this enzyme were determined under moderate pressure. The activation energy (E(a)) was 32.08 kJmol(-1) and kinetic parameters (V(max), K(m), K(cat) and K(cat)/K(m)) for this bioconversion were 8.8 Umg(-1) protein, 2.95 mM, 30.81 s(-1) and 10,444.06 s(-1)M(-1), respectively. The biomass of C. versicolor as well as the cell-free extract containing glucose 2-oxidase activity were also useful for bioconversion of D-glucose at moderate pressures. The enzyme was apparently stable at moderate pressures since such pressures did not affect significantly the enzyme activity.
Resumo:
The immobilized glucose 2-oxidase (pyranose oxidase, pyranose:oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor was used to convert D-glucose into D-glucosone at moderate pressures, up to 150 bar, with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, different forms of immobilized biocatalysts, glucose concentration, pH, temperature and the presence of catalase. Glucose 2-oxidase (GOX2) was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. Purified enzyme and catalase were immobilized into a polyethersulfone (PES) membrane in the presence of glutaraldehyde and gelatin. Enhancement of the bioconversion of D-glucose was done by the pressure since an increase in the pressure with compressed air increases the conversion rates. The optimum temperature and pH for bioconversion of D-glucose were found to be 62 degrees C and pH 6.0, respectively and the activation energy (E(a)) was 28.01 kJ mol(-1). The apparent kinetic constants (V(max)' K(m)', K(cat)' and K(cat)/K(m)') for this bioconversion were 2.27 U mg(-1) protein, 11.15 mM, 8.33 s(-1) and 747.38 s(-1) M(-1), respectively. The immobilized biomass of C. versicolor as well as crude extract containing GOX2 activity were also useful for bioconversion of D-glucose at 65 bar with a yield of 69.9 +/- 3.8% and 91.3 +/- 1.2%, respectively. The immobilized enzyme was apparently stable for several months without any significant loss of enzyme activity. On the other hand, this immobilized enzyme was also stable at moderate pressures, since such pressures did not affect significantly the enzyme activity. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Introduction and Objectives - Paraoxonases may exert anti-atherogenic action by reducing lipid peroxidation. Previous studies examined associations between polymorphisms in the paraoxonase 1 (PON1) gene and development of coronary artery disease (CAD), with inconsistent results. Given the similarities in clinical and pathophysiological risk factors of CAD and calcific aortic valve stenosis (CAVS), we postulated a link between PON1 alleles and CAVS progression. Methods - We investigated the association between PON1 55 and 192 single nucleotide polymorphisms (SNPs), their enzyme activity, and CAVS progression assessed by aortic valve area and transvalvular peak velocity in 67 consecutive patients with moderate CAVS and 251 healthy controls. Results - PON1 paraoxonase activity was higher in CAVS patients (P<0.001). The PON1 genotype Q192R SNP (P=0.03) and variant allele (R192) (P=0.01) frequencies differed between CAVS patients and controls. Significant association existed between PON1 enzyme activity, phenotypic effects of PON1 192 genotype polymorphisms, and CAVS progression, but not between PON1 55 and high-density lipoprotein (P=0.44) or low-density lipoprotein cholesterol (P=0.12), between 192 genotype and high-density lipoprotein (P=0.24) or low-density lipoprotein cholesterol (P=0.52). Conclusion - The PON1 genotype Q192R SNP has an important effect on CAVS disease progression. This study helps outline a genotype-phenotype relationship for PON1 in this unique population.
Resumo:
A strain of Pleurotus ostreatus was grown in tomato pomace as sole carbon source for production of laccase. The culture of P. ostreatus revealed a peak of laccase activity (147 U/L of fermentation broth) on the 4th day of culture with a specific activity of 2.8 U/mg protein. Differential chromatographic behaviour of laccase was investigated on affinity chromatographic matrices containing either urea, acetamide, ethanolamine or IDA as affinity ligands. Laccase exhibited retention on such affinity matrices and it was purified on a Sepharose 6B-BDGE-urea column with final enzyme recoveries of about 60%, specific activity of 6.0 and 18.0 U/mg protein and purification factors in the range of 14-46. It was also possible to demonstrate that metal-free laccase did not adsorb to Sepharose 6B-BDGE-urea column which suggests that adsorption of native laccase on this affinity matrix was apparently due to the specific interaction of carbonyl groups available on the matrix with the active site Cu (II) ions of laccase. The kinetic parameters (V (max), K (m) , K (cat), and K (cat)/K (m) ) of the purified enzyme for several substrates were determined as well as laccase stability and optimum pH and temperature of enzyme activity. This is the first report describing the production of laccase from P. ostreatus grown on tomato pomace and purification of this enzyme based on affinity matrix containing urea as affinity ligand.
Resumo:
Isoniazid (INH) is still one of the two most effective antitubercular drugs and is included in all recommended multitherapeutic regimens. Because of the increasing resistance of Mycobacterium tuberculosis to INH, mainly associated with mutations in the katG gene, new INH-based compounds have been proposed to circumvent this problem. In this work, we present a detailed comparative study of the molecular determinants of the interactions between wt KatG or its S315T mutant form and either INH or INH-C10, a new acylated INH derivative. MD simulations were used to explore the conformational space of both proteins, and results indicate that the S315T mutation did not have a significant impact on the average size of the access tunnel in the vicinity of these residues. Our simulations also indicate that the steric hindrance role assigned to Asp137 is transient and that electrostatic changes can be important in understanding the enzyme activity data of mutations in KatG. Additionally, molecular docking studies were used to determine the preferred modes of binding of the two substrates. Upon mutation, the apparently less favored docking solution for reaction became the most abundant, suggesting that S315T mutation favors less optimal binding modes. Moreover, the aliphatic tail in INH-C10 seems to bring the hydrazine group closer to the heme, thus favoring the apparent most reactive binding mode, regardless of the enzyme form. The ITC data is in agreement with our interpretation of the C10 alkyl chain role and helped to rationalize the significantly lower experimental MIC value observed for INH-C10. This compound seems to be able to counterbalance most of the conformational restrictions introduced by the mutation, which are thought to be responsible for the decrease in INH activity in the mutated strain. Therefore, INH-C10 appears to be a very promising lead compound for drug development.