2 resultados para decentralized and centralized HRM

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scope of this paper is to adapt the standard mean-variance model of Henry Markowitz theory, creating a simulation tool to find the optimal configuration of the portfolio aggregator, calculate its profitability and risk. Currently, there is a deep discussion going on among the power system society about the structure and architecture of the future electric system. In this environment, policy makers and electric utilities find new approaches to access the electricity market; this configures new challenging positions in order to find innovative strategies and methodologies. Decentralized power generation is gaining relevance in liberalized markets, and small and medium size electricity consumers are also become producers (“prosumers”). In this scenario an electric aggregator is an entity that joins a group of electric clients, customers, producers, “prosumers” together as a single purchasing unit to negotiate the purchase and sale of electricity. The aggregator conducts research on electricity prices, contract terms and conditions in order to promote better energy prices for their clients and allows small and medium customers to benefit improved market prices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In global scientific experiments with collaborative scenarios involving multinational teams there are big challenges related to data access, namely data movements are precluded to other regions or Clouds due to the constraints on latency costs, data privacy and data ownership. Furthermore, each site is processing local data sets using specialized algorithms and producing intermediate results that are helpful as inputs to applications running on remote sites. This paper shows how to model such collaborative scenarios as a scientific workflow implemented with AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic), a decentralized framework offering a feasible solution to run the workflow activities on distributed data centers in different regions without the need of large data movements. The AWARD workflow activities are independently monitored and dynamically reconfigured and steering by different users, namely by hot-swapping the algorithms to enhance the computation results or by changing the workflow structure to support feedback dependencies where an activity receives feedback output from a successor activity. A real implementation of one practical scenario and its execution on multiple data centers of the Amazon Cloud is presented including experimental results with steering by multiple users.