4 resultados para ddc:660
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
A crescente procura e o carácter finito dos recursos energéticos fósseis e as consequências nocivas de natureza ambiental provocadas pela emissão de gases de efeito de estufa para atmosfera, resultantes da sua combustão, obriga a reequacionar a utilização da energia, com uma maior racionalização nos consumos e diversificando as suas fontes e formas, com particular importância para as energias renováveis, onde as pellets, como forma densificada de biomassa, se inserem. O presente trabalho visa avaliar o potencial de incorporação de resíduos agrícolas como matéria-prima na produção de pellets a utilizar como combustível em caldeiras domésticas, sendo, para isso, contabilizados os resíduos agrícolas existentes em Portugal Continental adequados para aquele efeito, e, também, avaliada, pela via experimental, a viabilidade técnica do uso destas pellets em caldeiras domésticas, com testes de combustão de alguns tipos de pellets de origem agrícola e florestal. Os quantitativos apurados de resíduos agrícolas, basearam-se fundamentalmente em dados relativos às áreas de cultura e às produções agrícolas de 2008 do Instituto Nacional de Estatística e em relações área/massa de resíduos ou produto agrícola/massa de resíduos, de vários autores credenciados. O potencial total anual destes resíduos ronda os 2,8 milhões de toneladas, correspondendo 43,5% às culturas permanentes, 6,6% às culturas temporárias, 8,4% à actividade agro-industrial e 41,5% aos matos, representando cerca de 1,2 milhões de toneladas equivalentes de petróleo, para um poder calorífico médio da ordem dos 17600 kJ/kg. Nos testes laboratoriais foram usadas pellets de pinho, adquiridas no mercado e de vides, de giestas e de bagaço de azeitona todos a 100% e de mistura de bagaço de azeitona e de pinho, ambos a 50%, que foram produzidas numa pelletizadora doméstica em virtude das fábricas existentes em Portugal não produzirem pellets que incorporem resíduos agrícolas. A densificação deste tipo de resíduos mostrou-se fácil de realizar, apenas exige um controlo apertado da humidade dos resíduos, após a sua trituração, para que se assegure uma boa consistência e o máximo potencial calorífico. Relativamente à combustão das pellets testadas verificou-se que esta se processou normalmente, sem interrupções e de forma muito semelhante às pellets de pinho, que serviram de referência. As pellets de vides e as de mistura aparentaram um menor poder calorífico, dado terem um maior teor de humidade originado nas operações de pelletização, notando-se que a caldeira demorava mais tempo até a bomba de recirculação arrancar (54 ºC). A ignição, com a caldeira fria, processou-se de forma fácil, mesmo com estas últimas pellets, embora naturalmente tenha demorado um pouco mais de tempo. O teor de cinzas destas pellets era superior às de pinho, mais do dobro, porém, sem qualquer influência no funcionamento da caldeira.
Resumo:
We investigate the crust, upper mantle and mantle transition zone of the Cape Verde hotspot by using seismic P and S receiver functions from several tens of local seismograph stations. We find a strong discontinuity at a depth of similar to 10 km underlain by a similar to 15-km thick layer with a high (similar to 1.9) Vp/Vs velocity ratio. We interpret this discontinuity and the underlying layer as the fossil Moho, inherited from the pre-hotspot era, and the plume-related magmatic underplate. Our uppermost-mantle models are very different from those previously obtained for this region: our S velocity is much lower and there are no indications of low densities. Contrary to previously published arguments for the standard transition zone thickness our data indicate that this thickness under the Cape Verde islands is up to similar to 30 km less than in the ambient mantle. This reduction is a combined effect of a depression of the 410-km discontinuity and an uplift of the 660-km discontinuity. The uplift is in contrast to laboratory data and some seismic data on a negligible dependence of depth of the 660-km discontinuity on temperature in hotspots. A large negative pressure-temperature slope which is suggested by our data implies that the 660-km discontinuity may resist passage of the plume. Our data reveal beneath the islands a reduction of S velocity of a few percent between 470-km and 510-km depths. The low velocity layer in the upper transition zone under the Cape Verde archipelago is very similar to that previously found under the Azores and a few other hotspots. In the literature there are reports on a regional 520-km discontinuity, the impedance of which is too large to be explained by the known phase transitions. Our observations suggest that the 520-km discontinuity may present the base of the low-velocity layer in the transition zone. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We have conducted a P and S receiver functions [PRFs and SRFs] analysis for 19 seismic stations on the Iberia and western Mediterranean. In the transition zone [TZ] the PRFs analysis reveals a band [from Gibraltar to Balearic] increased by 10-20 km relative to the standard 250 km. The TZ thickness variations are strongly correlated with the P660s times in PRFs. We interpret the variable depth of the 660-km discontinuity as an effect of subduction. Over the anomalous TZ we found a reduced velocity zone in the upper mantle. Joint inversion of PRFs and SRFs reveals a subcrustal high S velocity lid and an underlying LVZ. A reduction of the S velocity in the LVZ is less than 10%. The Gutenberg discontinuity is located at 65±5 km, but in several models sampling the Mediterranean, the lid is missing or its thickness is reduced to ~30 km. In the Gibraltar and North Africa this boundary is located at ~100 km. The lid Vp/Vs beneath Betics is reduced relative to the standard 1.8. Another evidence of the Vp/Vs anomaly is provided by S410p phase late arrivals in the SRFs. The azimuthal anisotropy analysis with a new technology was conducted at 5 stations and at 2 groups of stations. The fast direction in the uppermost mantle layer is ~90º in Iberian Massif. In Balearic is in the azimuth of ~120º. At a depth of ~60 km the direction becomes 90º. Anisotropy in the upper layer can be interpreted as frozen, whereas anisotropy in the lower layer is active, corresponding to the present-day or recent flow. The effect of the asthenosphere in the SKS splitting is much larger than the effect of the subcrustal lithosphere.
Resumo:
P and S receiver functions (PRF and SRF) from 19 seismograph stations in the Gibraltar Arc and the Iberian Massif reveal new details of the regional deep structure. Within the high-velocity mantle body below southern Spain the 660-km discontinuity is depressed by at least 20 km. The Ps phase from the 410-km discontinuity is missing at most stations in the Gibraltar Arc. A thin (similar to 50 km) low-S-velocity layer atop the 410-km discontinuity is found under the Atlantic margin. At most stations the S410p phase in the SRFs arrives 1.0-2.5 s earlier than predicted by IASP91 model, but, for the propagation paths through the upper mantle below southern Spain, the arrivals of S410p are delayed by up to +1.5 s. The early arrivals can be explained by elevated Vp/Vs ratio in the upper mantle or by a depressed 410-km discontinuity. The positive residuals are indicative of a low (similar to 1.7 versus similar to 1.8 in IASP91) Vp/Vs ratio. Previously, the low ratio was found in depleted lithosphere of Precambrian cratons. From simultaneous inversion of the PRFs and SRFs we recognize two types of the mantle: 'continental' and 'oceanic'. In the 'continental' upper mantle the S-wave velocity in the high-velocity lid is 4.4-4.5 km s(-1), the S-velocity contrast between the lid and the underlying mantle is often near the limit of resolution (0.1 km s(-1)), and the bottom of the lid is at a depth reaching 90 100 km. In the 'oceanic' domain, the S-wave velocities in the lid and the underlying mantle are typically 4.2-4.3 and similar to 4.0 km s(-1), respectively. The bottom of the lid is at a shallow depth (around 50 km), and at some locations the lid is replaced by a low S-wave velocity layer. The narrow S-N-oriented band of earthquakes at depths from 70 to 120 km in the Alboran Sea is in the 'continental' domain, near the boundary between the 'continental' and 'oceanic' domains, and the intermediate seismicity may be an effect of ongoing destruction of the continental lithosphere.