20 resultados para data validation
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
In this work the identification and diagnosis of various stages of chronic liver disease is addressed. The classification results of a support vector machine, a decision tree and a k-nearest neighbor classifier are compared. Ultrasound image intensity and textural features are jointly used with clinical and laboratorial data in the staging process. The classifiers training is performed by using a population of 97 patients at six different stages of chronic liver disease and a leave-one-out cross-validation strategy. The best results are obtained using the support vector machine with a radial-basis kernel, with 73.20% of overall accuracy. The good performance of the method is a promising indicator that it can be used, in a non invasive way, to provide reliable information about the chronic liver disease staging.
Resumo:
In this work liver contour is semi-automatically segmented and quantified in order to help the identification and diagnosis of diffuse liver disease. The features extracted from the liver contour are jointly used with clinical and laboratorial data in the staging process. The classification results of a support vector machine, a Bayesian and a k-nearest neighbor classifier are compared. A population of 88 patients at five different stages of diffuse liver disease and a leave-one-out cross-validation strategy are used in the classification process. The best results are obtained using the k-nearest neighbor classifier, with an overall accuracy of 80.68%. The good performance of the proposed method shows a reliable indicator that can improve the information in the staging of diffuse liver disease.
Resumo:
The aim of this paper is to develop models for experimental open-channel water delivery systems and assess the use of three data-driven modeling tools toward that end. Water delivery canals are nonlinear dynamical systems and thus should be modeled to meet given operational requirements while capturing all relevant dynamics, including transport delays. Typically, the derivation of first principle models for open-channel systems is based on the use of Saint-Venant equations for shallow water, which is a time-consuming task and demands for specific expertise. The present paper proposes and assesses the use of three data-driven modeling tools: artificial neural networks, composite local linear models and fuzzy systems. The canal from Hydraulics and Canal Control Nucleus (A parts per thousand vora University, Portugal) will be used as a benchmark: The models are identified using data collected from the experimental facility, and then their performances are assessed based on suitable validation criterion. The performance of all models is compared among each other and against the experimental data to show the effectiveness of such tools to capture all significant dynamics within the canal system and, therefore, provide accurate nonlinear models that can be used for simulation or control. The models are available upon request to the authors.
Resumo:
Conferência: CONTROLO’2012 - 16-18 July 2012 - Funchal
Resumo:
Lossless compression algorithms of the Lempel-Ziv (LZ) family are widely used nowadays. Regarding time and memory requirements, LZ encoding is much more demanding than decoding. In order to speed up the encoding process, efficient data structures, like suffix trees, have been used. In this paper, we explore the use of suffix arrays to hold the dictionary of the LZ encoder, and propose an algorithm to search over it. We show that the resulting encoder attains roughly the same compression ratios as those based on suffix trees. However, the amount of memory required by the suffix array is fixed, and much lower than the variable amount of memory used by encoders based on suffix trees (which depends on the text to encode). We conclude that suffix arrays, when compared to suffix trees in terms of the trade-off among time, memory, and compression ratio, may be preferable in scenarios (e.g., embedded systems) where memory is at a premium and high speed is not critical.
Resumo:
: A new active-contraction visco-elastic numerical model of the pelvic floor (skeletal) muscle is presented. Our model includes all elements that represent the muscle constitutive behavior, contraction and relaxation. In contrast with the previous models, the activation function can be null. The complete equations are shown and exactly linearized. Small verification and validation tests are performed and the pelvis is modeled using the data from the intra-abdominal pressure tests
Resumo:
Opposite enantiomers exhibit different NMR properties in the presence of an external common chiral element, and a chiral molecule exhibits different NMR properties in the presence of external enantiomeric chiral elements. Automatic prediction of such differences, and comparison with experimental values, leads to the assignment of the absolute configuration. Here two cases are reported, one using a dataset of 80 chiral secondary alcohols esterified with (R)-MTPA and the corresponding 1H NMR chemical shifts and the other with 94 13C NMR chemical shifts of chiral secondary alcohols in two enantiomeric chiral solvents. For the first application, counterpropagation neural networks were trained to predict the sign of the difference between chemical shifts of opposite stereoisomers. The neural networks were trained to process the chirality code of the alcohol as the input, and to give the NMR property as the output. In the second application, similar neural networks were employed, but the property to predict was the difference of chemical shifts in the two enantiomeric solvents. For independent test sets of 20 objects, 100% correct predictions were obtained in both applications concerning the sign of the chemical shifts differences. Additionally, with the second dataset, the difference of chemical shifts in the two enantiomeric solvents was quantitatively predicted, yielding r2 0.936 for the test set between the predicted and experimental values.
Resumo:
O trabalho que a seguir se apresenta tem como objectivo descrever a criação de um modelo que sirva de suporte a um sistema de apoio à decisão sobre o risco inerente à execução de projectos na área das Tecnologias de Informação (TI) recorrendo a técnicas de mineração de dados. Durante o ciclo de vida de um projecto, existem inúmeros factores que contribuem para o seu sucesso ou insucesso. A responsabilidade de monitorizar, antever e mitigar esses factores recai sobre o Gestor de Projecto. A gestão de projectos é uma tarefa difícil e dispendiosa, consome muitos recursos, depende de numerosas variáveis e, muitas vezes, até da própria experiência do Gestor de Projecto. Ao ser confrontado com as previsões de duração e de esforço para a execução de uma determinada tarefa, o Gestor de Projecto, exceptuando a sua percepção e intuição pessoal, não tem um modo objectivo de medir a plausibilidade dos valores que lhe são apresentados pelo eventual executor da tarefa. As referidas previsões são fundamentais para a organização, pois sobre elas são tomadas as decisões de planeamento global estratégico corporativo, de execução, de adiamento, de cancelamento, de adjudicação, de renegociação de âmbito, de adjudicação externa, entre outros. Esta propensão para o desvio, quando detectada numa fase inicial, pode ajudar a gerir melhor o risco associado à Gestão de Projectos. O sucesso de cada projecto terminado foi qualificado tendo em conta a ponderação de três factores: o desvio ao orçamentado, o desvio ao planeado e o desvio ao especificado. Analisando os projectos decorridos, e correlacionando alguns dos seus atributos com o seu grau de sucesso o modelo classifica, qualitativamente, um novo projecto quanto ao seu risco. Neste contexto o risco representa o grau de afastamento do projecto ao sucesso. Recorrendo a algoritmos de mineração de dados, tais como, árvores de classificação e redes neuronais, descreve-se o desenvolvimento de um modelo que suporta um sistema de apoio à decisão baseado na classificação de novos projectos. Os modelos são o resultado de um extensivo conjunto de testes de validação onde se procuram e refinam os indicadores que melhor caracterizam os atributos de um projecto e que mais influenciam o risco. Como suporte tecnológico para o desenvolvimento e teste foi utilizada a ferramenta Weka 3. Uma boa utilização do modelo proposto possibilitará a criação de planos de contingência mais detalhados e uma gestão mais próxima para projectos que apresentem uma maior propensão para o risco. Assim, o resultado final pretende constituir mais uma ferramenta à disposição do Gestor de Projecto.
Resumo:
O objectivo deste trabalho passa pelo desenvolvimento de uma ferramenta de simulação dinâmica de recursos rádio em LTE no sentido descendente, com recurso à Framework OMNeT++. A ferramenta desenvolvida permite realizar o planeamento das estações base, simulação e análise de resultados. São descritos os principais aspectos da tecnologia de acesso rádio, designadamente a arquitectura da rede, a codificação, definição dos recursos rádio, os ritmos de transmissão suportados ao nível de canal e o mecanismo de controlo de admissão. Foi definido o cenário de utilização de recursos rádio que inclui a definição de modelos de tráfego e de serviços orientados a pacotes e circuitos. Foi ainda considerado um cenário de referência para a verificação e validação do modelo de simulação. A simulação efectua-se ao nível de sistema, suportada por um modelo dinâmico, estocástico e orientado por eventos discretos de modo a contemplar os diferentes mecanismos característicos da tecnologia OFDMA. Os resultados obtidos permitem a análise de desempenho dos serviços, estações base e sistema ao nível do throughput médio da rede, throughput médio por eNodeB e throughput médio por móvel para além de permitir analisar o contributo de outros parâmetros designadamente, largura de banda, raio de cobertura, perfil dos serviços, esquema de modulação, entre outros. Dos resultados obtidos foi possível verificar que, considerando um cenário com estações base com raio de cobertura de 100 m obteve-se um throughput ao nível do utilizador final igual a 4.69494 Mbps, ou seja, 7 vezes superior quando comparado a estações base com raios de cobertura de 200m.
Resumo:
This paper presents an investigation into cloud-to-ground lightning activity over the continental territory of Portugal with data collected by the national Lightning Location System. The Lightning Location System in Portugal is first presented. Analyses about geographical, seasonal, and polarity distribution of cloud-to-ground lightning activity and cumulative probability of peak current are carried out. An overall ground flash density map is constructed from the database, which contains the information of more than five years and almost four million records. This map is compared with the thunderstorm days map, produced by the Portuguese Institute of Meteorology, and with the orographic map of Portugal. Finally, conclusions are duly drawn.
Resumo:
We present a study of the magnetic properties of a group of basalt samples from the Saldanha Massif (Mid-Atlantic Ridge - MAR - 36degrees 33' 54" N, 33degrees 26' W), and we set out to interpret these properties in the tectono-magmatic framework of this sector of the MAR. Most samples have low magnetic anisotropy and magnetic minerals of single domain grain size, typical of rapid cooling. The thermomagnetic study mostly shows two different susceptibility peaks. The high temperature peak is related to mineralogical alteration due to heating. The low temperature peak shows a distinction between three different stages of low temperature oxidation: the presence of titanomagnetite, titanomagnetite and titanomaghemite, and exclusively of titanomaghemite. Based on established empirical relationships between Curie temperature and degree of oxidation, the latter is tentatively deduced for all samples. Finally, swath bathymetry and sidescan sonar data combined with dive observations show that the Saldanha Massif is located over an exposed section of upper mantle rocks interpreted to be the result of detachment tectonics. Basalt samples inside the detachment zone often have higher than expected oxidation rates; this effect can be explained by the higher permeability caused by the detachment fault activity.
Resumo:
The 27 December 1722 Algarve earthquake destroyed a large area in southern Portugal generating a local tsunami that inundated the shallow areas of Tavira. It is unclear whether its source was located onshore or offshore and, in any case, what was the tectonic source responsible for the event. We analyze available historical information concerning macroseismicity and the tsunami to discuss the most probable location of the source. We also review available seismotectonic knowledge of the offshore region close to the probable epicenter, selecting a set of four candidate sources. We simulate tsunamis produced by these candidate sources assuming that the sea bottom displacement is caused by a compressive dislocation over a rectangular fault, as given by the half-space homogeneous elastic approach, and we use numerical modeling to study wave propagation and run-up. We conclude that the 27 December 1722 Tavira earthquake and tsunami was probably generated offshore, close to 37 degrees 01'N, 7 degrees 49'W.
Resumo:
Although stock prices fluctuate, the variations are relatively small and are frequently assumed to be normal distributed on a large time scale. But sometimes these fluctuations can become determinant, especially when unforeseen large drops in asset prices are observed that could result in huge losses or even in market crashes. The evidence shows that these events happen far more often than would be expected under the generalized assumption of normal distributed financial returns. Thus it is crucial to properly model the distribution tails so as to be able to predict the frequency and magnitude of extreme stock price returns. In this paper we follow the approach suggested by McNeil and Frey (2000) and combine the GARCH-type models with the Extreme Value Theory (EVT) to estimate the tails of three financial index returns DJI,FTSE 100 and NIKKEI 225 representing three important financial areas in the world. Our results indicate that EVT-based conditional quantile estimates are much more accurate than those from conventional AR-GARCH models assuming normal or Student’s t-distribution innovations when doing out-of-sample estimation (within the insample estimation, this is so for the right tail of the distribution of returns).
Resumo:
The importance of Social Responsibility (SR) is higher if this business variable is related with other ones of strategic nature in business activity (competitive success that the company achieved, performance that the firms develop and innovations that they carries out). The hypothesis is that organizations that focus on SR are those who get higher outputs and innovate more, achieving greater competitive success. A scale for measuring the orientation to SR has defined in order to determine the degree of relationship between above elements. This instrument is original because previous scales do not exist in the literature which could measure, on the one hand, the three classics sub-constructs theoretically accepted that SR is made up and, on the other hand, the relationship between SR and the other variables. As a result of causal relationships analysis we conclude with a scale of 21 indicators, validated scale with a sample of firms belonging to the Autonomous Community of Extremadura and it is the first empirical validation of these dimensions we know so far, in this context.
Resumo:
Mestrado em Intervenção Sócio-Organizacional na Saúde - Área de especialização: Políticas de Gestão e Administração dos Serviços de Saúde.