26 resultados para damping dynamic mechanical analysis DMA CFRP electrospinning tan(delta)

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho de Dissertação de Natureza Científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The current study focuses on the analysis of pressure surge damping in single pipeline systems generated by a fast change of flow, conditions. A dimensionless form of pressurised transient flow equations was developed. presenting the main advantage of being independent of the system characteristics. In lack of flow velocity profiles. the unsteady friction in turbulent regimes is analysed based on two new empirical corrective-coefficients associated with local and convective acceleration terms. A new, surge damping approach is also presented taking into account the pressure peak time variation. The observed attenuation effect in the pressure wave for high deformable pipe materials can be described by a combination of the non-elastic behaviour of the pipe-wall with steady and unsteady friction effects. Several simulations and experimental tests have been carried out. in order to analyse the dynamic response of single pipelines with different characteristics, such as pipe materials. diameters. thickness. lengths and transient conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the most effective ways of controlling vibrations in plate or beam structures is by means of constrained viscoelastic damping treatments. Contrary to the unconstrained configuration, the design of constrained and integrated layer damping treatments is multifaceted because the thickness of the viscoelastic layer acts distinctly on the two main counterparts of the strain energy the volume of viscoelastic material and the shear strain field. In this work, a parametric study is performed exploring the effect that the design parameters, namely the thickness/length ratio, constraining layer thickness, material modulus, natural mode and boundary conditions have on these two counterparts and subsequently, on the treatment efficiency. This paper presents five parametric studies, namely, the thickness/length ratio, the constraining layer thickness, material properties, natural mode and boundary conditions. The results obtained evidence an interesting effect when dealing with very thin viscoelastic layers that contradicts the standard treatment efficiency vs. layer thickness relation; hence, the potential optimisation of constrained and integrated viscoelastic treatments through the use of properly designed thin multilayer configurations is justified. This work presents a dimensionless analysis and provides useful general guidelines for the efficient design of constrained and integrated damping treatments based on single or multi-layer configurations. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As wind power generation undergoes rapid growth, new technical challenges emerge: dynamic stability and power quality. The influence of wind speed disturbances and a pitch control malfunction on the quality of the energy injected into the electric grid is studied for variable-speed wind turbines with different power-electronic converter topologies. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with permanent magnet synchronous generators. The performance of disturbance attenuation and system robustness is ascertained. Simulation results are presented and conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is on variable-speed wind turbines with permanent magnet synchronous generator (PMSG). Three different drive train mass models and three different topologies for the power-electronic converters are considered. The three different topologies considered are respectively a matrix, a two-level and a multilevel converter. A novel control strategy, based on fractional-order controllers, is proposed for the wind turbines. Simulation results are presented to illustrate the behaviour of the wind turbines during a converter control malfunction, considering the fractional-order controllers. Finally, conclusions are duly drawn. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica na Área de Manutenção e Produção

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho de Dissertação de natureza científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Master Thesis in Mechanical Engineering field of Maintenance and Production

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica Perfil Energia, Refrigeração e Climatização

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho Final de Mestrado elaborado no Laboratório de Engenharia Civil (LNEC) para obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação entre o ISEL e o LNEC

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de natureza Científica para obtenção do grau de Mestre em Engenharia Civil

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study of chemical transformations of cork during heat treatments was made using colour variation and FTIR analysis. The cork enriched fractions from Quercus cerris bark were subjected to isothermal heating in the temperature range 150–400 ◦C and treatment time from 5 to 90 min. Mass loss ranged from 3% (90 min at 150 ◦C) to 71% (60 min at 350 ◦C). FTIR showed that hemicelluloses were thermally degraded first while suberin remained as the most heat resistant component. The change of CIE-Lab parameters was rapid for low intensity treatments where no significant mass loss occurred (at 150 ◦C L* decreased from the initial 51.5 to 37.3 after 20 min). The decrease in all colour parameters continued with temperature until they remained substantially constant with over 40% mass loss. Modelling of the thermally induced mass loss could be made using colour analysis. This is applicable to monitoring the production of heat expanded insulation agglomerates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Basaltic rocks are the main component of the oceanic upper crust, thus of potential interest for water and geothermal resources, storage of CO2 and volcanic edifice stability. In this work, we investigated experimentally the mechanical behavior and the failure modes of a porous basalt, with an initial connected porosity of 18%. Results were acquired under triaxial compression experiments at confining pressure in the range of 25-200 MPa on water saturated samples. In addition, a purely hydrostatic test was also performed to reach the pore collapse critical pressure P*. During hydrostatic loading, our results show that the permeability is highly pressure dependent, which suggests that the permeability is mainly controlled by pre-existing cracks. When the sample is deformed at pressure higher than the pore collapse pressure P*, some very small dilatancy develops due to microcracking, and an increase in permeability is observed. Under triaxial loading, two modes of deformation can be highlighted. At low confining pressure (Pc < 50 MPa), the samples are brittle and shear localization occurs. For confining pressure > 50 MPa, the stress-strain curves are characterized by strain hardening and volumetric compaction. Stress drops are also observed, suggesting that compaction may be localized. The presence of compaction bands is confirmed by our microstructure analysis. In addition, the mechanical data allows us to plot the full yield surface for this porous basalt, which follows an elliptic cap as previously observed in high porosity sandstones and limestones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydraulic systems are dynamically susceptible in the presence of entrapped air pockets, leading to amplified transient reactions. In order to model the dynamic action of an entrapped air pocket in a confined system, a heuristic mathematical formulation based on a conceptual analogy to a mechanical spring-damper system is proposed. The formulation is based on the polytropic relationship of an ideal gas and includes an additional term, which encompasses the combined damping effects associated with the thermodynamic deviations from the theoretical transformation, as well as those arising from the transient vorticity developed in both fluid domains (air and water). These effects represent the key factors that account for flow energy dissipation and pressure damping. Model validation was completed via numerical simulation of experimental measurements.