51 resultados para cyclopentadienyl complexes
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
A series of new ruthenium(II) complexes of the general formula [Ru(eta(5)-C5H5)(PP)(L)][PF6] (PP = DPPE or 2PPh(3), L = 4-butoxybenzonitrile or N-(3-cyanophenyl)formamide) and the binuclear iron(II) complex [Fe(eta(5)-C5H5)(PP)(mu-L)(PP)(eta(5)-C5H5)Fe][PF6](2) (L = (E)-2-(3-(4-nitrophenyl)allylidene)malononitrile, that has been also newly synthesized) have been prepared and studied to evaluate their potential in the second harmonic generation property. All the new compounds were fully characterized by NMR, IR and UV-Vis spectroscopies and their electrochemistry behaviour was studied by cyclic voltammetry. Quadratic hyperpolarizabilities (beta) of three of the complexes have been determined by hyper-Rayleigh scattering (HRS) measurements at fundamental wavelength of 1500 nm and the calculated static beta(0) values are found to fall in the range 65-212 x 10(-30) esu. Compound presenting beta(0) = 212 x 10(-30) esu has revealed to be 1.2 times more efficient than urea standard in the second harmonic generation (SHG) property, measured in the solid state by Kurtz powder technique, using a Nd:YAG laser (1064 nm). (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Four cationic ruthenium(II) complexes with the formula [Ru(eta(5)-C5H5)(PPh3)(2)](+), with L = 5-phenyl-1H-tetrazole (TzH) 1, imidazole (ImH) 2, benzo[1,2-b; 4,3-b'] dithio-phen-2-carbonitrile (Bzt) 3, and [5-(2-thiophen-2-yl)-vinyl]-thiophene-2-carbonitrile] (Tvt) 4 were prepared and characterized in view to evaluate their potentialities as antitumor agents. Studies by Circular Dichroism indicated changes in the secondary structure of ct-DNA. Changes in the tertiary structure of pBR322 plasmid DNA were also observed in gel electrophoresis experiment and the images obtained by atomic force microscopy (AFM) suggest strong interaction with pBR322 plasmid DNA; the observed decreasing of the viscosity with time indicates that the complexes do not intercalate between DNA base pairs. Compounds 1, 2, and 3 showed much higher cytotoxicity than the cisplatin against human leukaemia cancer cells (HL-60 cells).
Resumo:
A series of mono(eta(5)-cyclopentadienyl)metal-(II) complexes with nitro-substituted thienyl acetylide ligands of general formula [M(eta(5)-C5H5)(L)(C C{C4H2S}(n)NO2)] (M = Fe, L = kappa(2)-DPPE, n = 1,2; M = Ru, L = kappa(2)-DPPE, 2 PPh3, n = 1, 2; M = Ni, L = PPh3, n = 1, 2) has been synthesized and fully characterized by NMR, FT-IR, and UV-Vis spectroscopy. The electrochemical behavior of the complexes was explored by cyclic voltammetry. Quadratic hyperpolarizabilities (beta) of the complexes have been determined by hyper-Rayleigh scattering (HRS) measurements at 1500 nm. The effect of donor abilities of different organometallic fragments on the quadratic hyperpolarizabilities was studied and correlated with spectroscopic and electrochemical data. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were employed to get a better understanding of the second-order nonlinear optical properties in these complexes. In this series, the complexity of the push pull systems is revealed; even so, several trends in the second-order hyperpolarizability can still be recognized. In particular, the overall data seem to indicate that the existence of other electronic transitions in addition to the main MLCT clearly controls the effectiveness of the organometallic donor ability on the second-order NLO properties of these push pull systems.
Resumo:
A new family of "Fe-II(eta(5)-C5H5)" half sandwich compounds bearing a N-heteroaromatic ligand coordinated to the iron center by a nitrile functional group has been synthesized and fully characterized by NMR and UV-Vis spectroscopy. X-ray analysis of single crystal was achieved for complexes 1 and 3, which crystallized in the monoclinic P2(1)/c and monoclinic P2(1)/n space groups, respectively. Studies of interaction of these five new complexes with plasmid pBR322 DNA by atomic force microscopy showed very strong and different types of interaction. Antiproliferative tests were examined on human leukemia cancer cells (HL-60) using the MTT assay, and the IC50 values revealed excellent antiproliferative activity compared to cisplatin. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The tris(1-pyrazolyl)methanesulfonate lithium salt Li(Tpms) [Tpms = SO3C(pz)(3)-] reacts with [Mo(CO)(6)] in NCMe heated at reflux to yield Li[Mo(Tpms)(CO)(3)] (1), which, upon crystallization from thf, forms the coordination polymer [Mo(Tpms)(CO)(2)(mu-CO)Li(thf)(2)](n) (2). Reaction of 1 with I-2, HBF4 or AgBF4 yields [Mo(Tpms)I(CO)(3)] (3), (Mo(Tpms)-H(CO)(3)] (5) or (Mo(Tpms)O-2](2)(mu-O) (7), respectively. The high-oxidation-state dinuclear complexes [{Mo(Tpms)O(mu-O)}(2)] (4) and [{Mo(tpms)OCl)(2)](mu-O) (6) are formed upon exposure to air of solutions of 3 and 5, respectively. Compounds 1-7, which appear to be the first tris(pyrazolyl)methanesulfonate complexes of molybdenum to be reported, were characterized by IR, H-1 and C-13 NMR spectroscopy, ESI-MS, elemental analysis, cyclic voltammetry and, in the cases of Li(Tpms) and compounds 2, 4.2CH(3)CN, 6.6CHCl(3) and 7, by X-ray diffraction analyses. Li(Tpms) forms a 1D polymeric structure (i.e., [Li(tpms)](n)} with Tpms as a tetradentate N2O2 chelating ligand that bridges two Li cations with distorted tetrahedral coordination. Compound 2 is a 1D coordination polymer in which Tpms acts as a bridging tetradentate N3O ligand and each Li(thf)(2)(+) moiety is coordinated by one bridging CO ligand and by the sulfonyl group of a contiguous monomeric unit. In 4, 6 and 7, the Tpms ligand is a tridentate chelator either in the NNO (in 4) or in the NNN (in 6 and 7) fashion. Complexes 1, 3 and 5 exhibit, by cyclic voltammetry, a single-electron oxidation at oxidation potential values that indicate that the Tpms ligand has an electron-donor character weaker than that of cyclopentadienyl.
Resumo:
Four ruthenium(II) complexes with the formula [Ru(eta(5)-C(5)H(5))(PP)L][CF(3)SO(3)], being (PP = two triphenylphosphine molecules), L = 1-benzylimidazole, 1; (PP = two triphenylphosphine molecules), L = 2,2'bipyridine, 2; (PP = two triphenylphosphine molecules), L = 4-Methylpyridine, 3; (PP = 1,2-bis(diphenylphosphine) ethane), L = 4-Methylpyridine, 4, were prepared, in view to evaluate their potentialities as antitumor agents. The compounds were completely characterized by NMR spectroscopy and their crystal and molecular structures were determined by X-ray diffraction. Electrochemical studies were carried out giving for all the compounds quasi-reversible processes. The images obtained by atomic force microscopy (AFM) suggest interaction with pBR322 plasmid DNA. Measurements of the viscosity of solutions of free DNA and DNA incubated with different concentrations of the compounds confirmed this interaction. The cytotoxicity of compounds 1234 was much higher than that of cisplatin against human leukemia cancer cells (HL-60 cells). IC(50) values for all the compounds are in the range of submicromolar amounts. Apoptotic death percentage was also studied resulting similar than that of cisplatin. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
A new family of "RuCp" (Cp=eta(5)-C5H5) derivatives with bidentate N,O and N,N'-heteroaromatic ligands revealed outstanding cytotoxic properties against several human cell lines namely, A2780, A2780CisR, HT29, MCF7, MDAMB231, and PD. IC50 values were much lower than those found for cisplatin. Crystal structure of compound 4 was determined by X-ray diffraction studies. Density functional theory (DFT) calculations performed for compound 1 showed electronic flow from the ruthenium center to the coordinated bidentate ligand, in agreement with the electrochemical studies and the existence of a metal-to-ligand charge-transfer (MLCT) band evidenced by spectroscopic data.
Resumo:
A survey of the scorpionate tris(pyrazolyl)methane complexes synthesized by our group is presented, as well as their structural features and catalytic applications toward the funtionalization of linear and cyclic light alkanes.
Resumo:
The new potentially N-4-multidentate pyridyl-functionalized scorpionates 4-((tris-2,2,2-(pyrazol-1-ypethoxy)methyl)pyridine (TpmPy, (1)) and 4-((tris-2,2,2-(3-phenylpyrazol-1-yl)ethoxy)methyl)pyridine (TpmPy(Ph), (2)) have been synthesized and their coordination behavior toward Fe-II, Ni-II, Zn-II, Cu-II, Pd-II, and V-III centers has been studied. Reaction of (1) with Fe(BF4)(2)center dot 6H(2)O yields [Fe(TpmPy)(2)](BF4)(2) (3), that, in the solid state, shows the sandwich structure with trihapto ligand coordination via the pyrazolyl arms, and is completely low spin (LS) until 400 K. Reactions of 2 equiv of (1) or (2) with Zn-II or Ni-II chlorides give the corresponding metal complexes with general formula [MCl2(TpmPy*)(2)] (M = Zn, Ni; TpmPy* = TpmPy, TpmPy(Ph)) (4-7) where the ligand is able to coordinate through either the pyrazolyl rings (in case of [Ni(TpmPy)(2)Cl-2 (5)) or the pyridyl-side (for [ZnCl2(TpmPy)(2)] (4), [ZnCl2(TpmPy(Ph))(2)] (6) and [NiCl2(TpmPy(Ph))(2)] (7)). The reaction of (1) with VCl3 gives [VOCl2(TpmPy)] (8) that shows the N-3-pyrazolyl coordination-mode. Moreover, (1) and react with cis-[PdCl2(CH3CN)(2)] to give the disubstituted complexes [PdCl2(TprnPy)(2)] (9) and [PdCl2(TpmPy(Ph))(2)] (10), respectively, bearing the scorpionate coordinated via the pyridyl group. Compounds (9) and (10) react with Fe(BF4)(2) to give the heterobimetallic Pd/Fe systems [PdCl2(mu-TpmPy)(2)-Fe](BF4)(2) (11) and [PdCl2(mu-TpmPy(Ph))(2)Fe-2(H2O)(6)]BF4)(4) (13), respectively. Compound (11) can also be formed from reaction of (3) with cis-[PdCl2(CH3CN)(2)], while reaction of (3) with Cu(NO3)(2).2.5H(2)O generates [Fe(mu-TpmPy)(2)-Cu(NO3)(2)](BF4)(2) (12), confirming the multidentate ability of the new chelating ligands. The X-ray diffraction analyses of compounds (1), (3), (4), (5), and (9) are also reported.
Resumo:
The dioxovanadium(V) complexes [VO2(3,5-Me(2)Hpz)(3)][BF4] (1) (pz = pyrazolyl), [VO2{SO3C(pz)(3)}] (2), [VO2{HB(3,5-Me(2)pz)(3)}] (3) and [VO2{HC(pz)(3)}][BF4] (4), bearing pyrazole or scorpionate ligands, were obtained by reaction of triethyl vanadate [VO(OEt)(3)] with hydrotris(3,5-dimethyl-1-pyrazolyl)methane [HC(3,5-Me(2)pz)(3)] or 3,5-dimethylpyrazole (3,5-Me(2)Hpz; 1), lithium tris(1-pyrazolyl)methanesulfonate {Li[SO3C(pz)(3)], 2}, potassium hydrotris(3,5-dimethyl-1-pyrazolyl)borate {K[HB(3,5-Me(2)pz)(3)], 3} and hydrotris(1-pyrazolyl)methane [HC(pz)(3), 4], respectively. Treatment of [VO(OEt)(3)] with potassium hydrotris(1-pyrazolyl)borate {K[HB(pz)(3)]} led to the mixed eta(3)-tris(pyrazolyl)borate and eta(2)-bis(pyrazolyl)borate oxovanadium(IV) complex [VO{HB(pz)(3)}{H2B(pz)(2)}, 5]. The compounds were characterized by elemental analyses, IR, NMR and EPR spectroscopy, FAB and ESI mass spectrometry, cyclic voltammetry and, for 5, also by single crystal X-ray diffraction analysis. All complexes exhibit catalytic activity in the single-pot carboxylation [in trifluoroacetic acid/potassium peroxodisulfate (CF3COOH/K2S2O8)] of gaseous alkanes (methane and ethane) to carboxylic acids (yields up to 40%. TONs up to 157) and in the peroxidative oxidation [in water/acetonitrile (H2O/NCMe)] of liquid alkanes (cyclohexane and cyclopentane) to the corresponding alcohols and ketones (yields up to 24%, TONs up to 117), under mild conditions.
Resumo:
The reactions of [ReCl2{eta(2)-N2C(O)Ph}(PPh3)(2)](1) with 2-aminopyrimidine (H(2)Npyrm), 2,2'-bipyridine (bpy) and tetraethylthiuram disulfide (tds), in MeOH upon reflux, lead to the new eta(1)-(benzoyldiazenido)-rhenium(III) complexes [ReCl{eta(1)-N2C(O)Ph}(HNpyrm)(PPh3)(2)](2)and [ReCl2{eta(1)-N2C(O)Ph}(bpy)(PPh3)] (3), and the known oxo(diethyldithiocarbamato)dirhenium(v)complex [Re2O2(mu O){Et2NC(S)S}(4)](4), respectively. The Et2NC(S)S ligands in 4 result from S-S bond rupture of tds molecules. The obtained compounds have been characterized by IR, H-1, P-31{H-1} and C-13{H-1} NMR spectroscopies, FAB(+)-MS, elemental and single-crystal X-ray diffraction (for 2 and 4)analyses. Complex 2 represents the first structurally characterized Re compound derived from 2-aminopyrimidine. Besides, the redox behaviour of 2-4 in CH2Cl2 solution has been studied by cyclic voltammetry, and the Lever electrochemical ligand parameter (E-L)has been estimated, for the first time, for HNpyrm. The electrochemical results are discussed in terms of electronic properties of the Re centres and the ligands.
Resumo:
Reactions of copper(II) with 3-phenylhydrazopentane-2,4-diones X-2-C6H4-NHN = C{C(= O)CH3}(2) bearing a substituent in the ortho-position [X = OH (H2L1) 1, AsO3H2 (H3L2) 2, Cl (HL3) 3, SO3H (H2L4) 4, COOCH3 (HL5) 5, COOH (H2L6) 6, NO2 (HL7) 7 or H (HL8) 8] lead to a variety of complexes including the monomeric [CuL4(H2O)(2)]center dot H2O 10, [CuL4(H2O)(2)] 11 and [Cu(HL4)(2)(H2O)(4)] 12, the dimeric [Cu-2(H2O)(2)(mu-HL2)(2)] 9 and the polymeric [Cu(mu-L-6)](n)] 13 ones, often bearing two fused six-membered metallacycles. Complexes 10-12 can interconvert, depending on pH and temperature, whereas the Cu(II) reactions with 4 in the presence of cyanoguanidine or imidazole (im) afford the monomeric compound [Cu(H2O)(4){NCNC(NH2)(2)}(2)](HL4)(2)center dot 6H(2)O 14 and the heteroligand polymer [Cu(mu-L-4)(im)](n) 15, respectively. The compounds were characterized by single crystal X-ray diffraction (complexes), electrochemical and thermogravimetric studies, as well as elemental analysis, IR, H-1 and C-13 NMR spectroscopies (diones) and ESI-MS. The effects of the substituents in 1-8 on the HOMO-LUMO gap and the relative stability of the model compounds [Cu(OH)(L-8)(H2O)]center dot H2O, [Cu(L-1)(H2O)(2)]center dot H2O and [Cu(L-4)(H2O)(2)]center dot H2O are discussed on the basis of DFT calculations that show the stabilization follows the order: two fused 6-membered > two fused 6-membered/5-membered > one 6-membered metallacycles. Complexes 9, 10, 12 and 13 act as catalyst precursors for the peroxidative oxidation (with H2O2) of cyclohexane to cyclohexanol and cyclohexanone, in MeCN/H2O (total yields of ca. 20% with TONs up to 566), under mild conditions.
Resumo:
Novel [Ru(L)(Tpms)]Cl and [Ru(L)(Tpms(Ph))]Cl complexes (L = p-cymene, benzene, or hexamethylbenzene, Tpms = tris(pyrazolyl)-methanesulfonate, Tpms(Ph) = tris(3-phenylpyrazoly)methanesulfonate) have been prepared by reaction of [Ru(L)(mu-Cl)(2)](2) with Li[Tpms] and Li[Tpms(Ph)], respectively. [Ru(p-cymene)(Tpms)]BF4 has been synthesized through a metathetic reaction of [Ru(p-cymene)(Tpms)]Cl with AgBF4. [RuCl(cod)(Tpms)] (cod = 1,5-cyclooctadiene) and [RuCl(cod)(Tpms(Ph))] are also reported, being obtained by reaction of [RuCl2(cod)(MeCN)(2)] with Li[Tpms] and Li[Tpms(Ph)], respectively. The structures of the complexes and the coordination modes of the ligands have been established by IR, NMR, and single-crystal X-ray diffraction (for [RuL(Tpms)]X (L = p-cymene or HMB, X = Cl; L = p-cymene, X = BF4)) studies. Electrochemical studies showed that each complex undergoes a single-electron R-II -> R-III oxidation at a potential measured by cyclic voltammetry, allowing to compare the electron-donor characters of the tris(pyrazolyl)methanesulfonate and arene ligands, and to estimate, for the first time, the values of the Lever E-L ligand parameter for Tmps(Ph), HMB, and cod.
Resumo:
The organotin(IV) compounds [Me2Sn(L)(2)] (1), [Et(2)sn(L)(2)] (2), [(Bu2Sn)-Bu-n(L)(2)] (3), [(n)Oct(2)Sn(L)(2)] (4), [Ph2Sn(L)(2)] (5), and [PhOSnL](6) (6) have been synthesized from the reactions of 1-(4-chlorophenyl)-1-cyclopentanecarboxylic acid (HL) with the corresponding diorganotin(IV) oxide or dichloride. They were characterized by IR and multinuclear NMR spectroscopies, elemental analysis, cyclic voltammetry, and, for 2, 3, 4 and 6, single crystal X-ray diffraction analysis. While 1-5 are mononuclear diorganotin (IV) compounds, the X-ray diffraction of 6 discloses a hexameric drumlike structure with a prismatic Sn6O6 core. All these complexes undergo irreversible reductions and were screened for their in vitro antitumor activities toward HL-60, BGC-823, Bel-7402, and KB human cancer cell lines. Within the mononuclear compounds, the most active ones (3, 5) are easiest to reduce (least cathodic reduction potentials), while the least active ones (1, 4) are the most difficult to reduce. Structural rearrangements (i.e., Sn-O bond cleavages and trans-to-cis isomerization) induced by reduction, which eventually can favor the bioactivity, are disclosed by theoretical/electrochemical studies.
Resumo:
The reactions of FeCl2 center dot 2H(2)O and 2,2,2-tris(1-pyrazolyl) ethanol HOCH2C(pz)(3) (1) (pz = pyrazolyl) afford [Fe{HOCH2C(pz)(3)}(2)][FeCl4]Cl (2), [Fe{HOCH2C(pz)(3)}(2)](2)[Fe2OCl6](Cl)(2)center dot 4H(2)O (3 center dot 4H(2)O), [Fe{HOCH2C(pz)(3)}(2)] [FeCl{HOCH2C(pz)(3)}(H2O)(2)](2)(Cl)(4) (4) or [Fe{HOCH2C(pz)(3)}(2)]Cl-2 (5), depending on the experimental conditions. Compounds 1-5 were isolated as air-stable crystalline solids and fully characterized, including (1-4) by single-crystal X-ray diffraction analyses. The latter technique revealed strong intermolecular H-bonds involving the OH group of the scorpionate 2 and 3 giving rise to 1D chains which, in 3, are further expanded to a 2D network with intercalated infinite and almost plane chains of H-interacting water molecules. In 4, intermolecular pi center dot center dot center dot pi interactions involving the pyrazolyl rings are relevant. Complexes 2-5 display a high solubility in water (S-25 degrees C ca. 10-12 mg mL(-1)), a favourable feature towards their application as catalysts (or catalyst precursors) for the peroxidative oxidation of cyclo-hexane to cyclohexanol and cyclohexanone, with aqueous H2O2/MeCN, at room temperature (TON values up to ca. 385). (C) 2011 Elsevier B. V. All rights reserved.