5 resultados para conditional random fields
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Topology optimization consists in finding the spatial distribution of a given total volume of material for the resulting structure to have some optimal property, for instance, maximization of structural stiffness or maximization of the fundamental eigenfrequency. In this paper a Genetic Algorithm (GA) employing a representation method based on trees is developed to generate initial feasible individuals that remain feasible upon crossover and mutation and as such do not require any repairing operator to ensure feasibility. Several application examples are studied involving the topology optimization of structures where the objective functions is the maximization of the stiffness and the maximization of the first and the second eigenfrequencies of a plate, all cases having a prescribed material volume constraint.
Resumo:
The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to increased interest in in vivo small animal imaging. Small animal imaging has been applied frequently to the imaging of small animals (mice and rats), which are ubiquitous in modeling human diseases and testing treatments. The use of PET in small animals allows the use of subjects as their own control, reducing the interanimal variability. This allows performing longitudinal studies on the same animal and improves the accuracy of biological models. However, small animal PET still suffers from several limitations. The amounts of radiotracers needed, limited scanner sensitivity, image resolution and image quantification issues, all could clearly benefit from additional research. Because nuclear medicine imaging deals with radioactive decay, the emission of radiation energy through photons and particles alongside with the detection of these quanta and particles in different materials make Monte Carlo method an important simulation tool in both nuclear medicine research and clinical practice. In order to optimize the quantitative use of PET in clinical practice, data- and image-processing methods are also a field of intense interest and development. The evaluation of such methods often relies on the use of simulated data and images since these offer control of the ground truth. Monte Carlo simulations are widely used for PET simulation since they take into account all the random processes involved in PET imaging, from the emission of the positron to the detection of the photons by the detectors. Simulation techniques have become an importance and indispensable complement to a wide range of problems that could not be addressed by experimental or analytical approaches.
Resumo:
Conferência: 9th International Symposium on Occupational Safety and Hygiene (SHO) Guimaraes, Portugal - FEB 14-15, 2013
Resumo:
The effect of monopolar and bipolar shaped pulses in additional yield of apple juice extraction is evaluated. The applied electric field strength, pulsewidth, and number of pulses are assessed for both pulse types, and divergences are analyzed. Variation of electric field strength is ranged from 100 to 1300 V/cm, pulsewidth from 20 to 300 mu s, and the number of pulses from 10 to 200, at a frequency of 200 Hz. Two pulse trains separated by 1 s are applied to apple cubes. Results are plotted against reference untreated samples for all assays. Specific energy consumption is calculated for each experiment as well as qualitative indicators for apple juice of total soluble dry matter and absorbance at 390-nm wavelength. Bipolar pulses demonstrated higher efficiency, and specific energetic consumption has a threshold where higher inputs of energy do not result in higher juice extraction when electric field variation is applied. Total soluble dry matter and absorbance results do not illustrate significant differences between application of monopolar and bipolar pulses, but all values are inside the limits proposed for apple juice intended for human consumption.
Resumo:
This work describes the utilization of Pulsed Electric Fields to control the protozoan contamination of a microalgae culture, in an industrial 2.7m3 microalgae photobioreactor. The contaminated culture was treated with Pulsed Electric Fields, PEF, for 6h with an average of 900V/cm, 65μs pulses of 50Hz. Working with recirculation, all the culture was uniformly exposed to the PEF throughout the assay. The development of the microalgae and protozoan populations was followed and the results showed that PEF is effective on the selective elimination of protozoa from microalgae cultures, inflicting on the protozoa growth halt, death or cell rupture, without affecting microalgae productivity. Specifically, the results show a reduction of the active protozoan population of 87% after 6h treatment and 100% after few days of normal cultivation regime. At the same time, microalgae growth rate remained unaffected. © 2014 Elsevier B.V.