3 resultados para approximate bayesian computation
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
A new high throughput and scalable architecture for unified transform coding in H.264/AVC is proposed in this paper. Such flexible structure is capable of computing all the 4x4 and 2x2 transforms for Ultra High Definition Video (UHDV) applications (4320x7680@ 30fps) in real-time and with low hardware cost. These significantly high performance levels were proven with the implementation of several different configurations of the proposed structure using both FPGA and ASIC 90 nm technologies. In addition, such experimental evaluation also demonstrated the high area efficiency of theproposed architecture, which in terms of Data Throughput per Unit of Area (DTUA) is at least 1.5 times more efficient than its more prominent related designs(1).
Resumo:
A new high performance architecture for the computation of all the DCT operations adopted in the H.264/AVC and HEVC standards is proposed in this paper. Contrasting to other dedicated transform cores, the presented multi-standard transform architecture is supported on a completely configurable, scalable and unified structure, that is able to compute not only the forward and the inverse 8×8 and 4×4 integer DCTs and the 4×4 and 2×2 Hadamard transforms defined in the H.264/AVC standard, but also the 4×4, 8×8, 16×16 and 32×32 integer transforms adopted in HEVC. Experimental results obtained using a Xilinx Virtex-7 FPGA demonstrated the superior performance and hardware efficiency levels provided by the proposed structure, which outperforms its more prominent related designs by at least 1.8 times. When integrated in a multi-core embedded system, this architecture allows the computation, in real-time, of all the transforms mentioned above for resolutions as high as the 8k Ultra High Definition Television (UHDTV) (7680×4320 @ 30fps).
Resumo:
When considering time series data of variables describing agent interactions in social neurobiological systems, measures of regularity can provide a global understanding of such system behaviors. Approximate entropy (ApEn) was introduced as a nonlinear measure to assess the complexity of a system behavior by quantifying the regularity of the generated time series. However, ApEn is not reliable when assessing and comparing the regularity of data series with short or inconsistent lengths, which often occur in studies of social neurobiological systems, particularly in dyadic human movement systems. Here, the authors present two normalized, nonmodified measures of regularity derived from the original ApEn, which are less dependent on time series length. The validity of the suggested measures was tested in well-established series (random and sine) prior to their empirical application, describing the dyadic behavior of athletes in team games. The authors consider one of the ApEn normalized measures to generate the 95th percentile envelopes that can be used to test whether a particular social neurobiological system is highly complex (i.e., generates highly unpredictable time series). Results demonstrated that suggested measures may be considered as valid instruments for measuring and comparing complexity in systems that produce time series with inconsistent lengths.