8 resultados para anomalous electron magnetic moment in the context of the LW electrodynamics
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
This work focuses on the study of flow and propagation of magma using rock magnetic analyses along sections across the thick Jurassic dyke of Foum-Zguid (Southern Morocco). Thermomagnetic data show that Ti-poor titanomagnetite is the main magnetic carrier. Petrographic analysis shows that the main Ti phase (ilmenite) occurs either as lamellae within spinel (center of the dyke) or as isolated grains (dyke margin). Bulk magnetic properties display distinct behavior according to the distance to the dyke margin; grain size of the main magnetic carrier decreases towards the center of the dyke, while the natural remanent magnetization and the bulk magnetic susceptibility increase. Only the magnetic susceptibility ellipsoid close to the dyke margin corresponds to that usually found in thin dykes, with the magnetic foliation sub parallel to dyke margins. Maximum principal axis is in most cases either parallel or perpendicular to the intersection between the planes of magnetic foliation and dyke wall. Moreover, when this axis is perpendicular to the intersection it is associated with a more oblate magnetic susceptibility ellipsoid shape, indicating the presence of complex magnetic fabrics. The studied magnetic properties show that, in this 100 m wide thick dyke, flow structures related with dyke propagation are only preserved close to the quickly cooled dyke margins.
Resumo:
The strange quark matter hypothesis is one of the most exciting speculations of the XX Century Physics. If this hypothesis is correct, the ground state of the matter would be the strange matter, which could form the core of compact objects like neutron stars or even more exotic objects like quarks stars. Due to the high-density and low-temperature regime in these stars, the interaction between quarks through gluon exchange could favor the appearance of a color superconducting state, significantl modifying the equation of state of the system. In this paper we present a general overview of this Subject, taking also into account the effect of strong magnetic field in the quark stars.
Resumo:
The scaling exponent of 1.6 between anomalous Hall and longitudinal conductivity, characteristic of the universal Hall mechanism in dirty-metal ferromagnets, emerges from a series of CrO2 films as we systematically increase structural disorder. Magnetic disorder in CrO2 increases with temperature and this drives a separate topological Hall mechanism. We find that these terms are controlled discretely by structural and magnetic defect populations, and their coexistence leads to apparent divergence from exponent 1.6, suggesting that the universal term is more prevalent than previously realized.
Resumo:
Develop a new model of Absorptive Capacity taking into account two variables namely Learning and knowledge to explain how companies transform information into knowledge
Resumo:
The effects of dyke intrusion on the magnetic properties of host sedimentary rocks are still poorly understood. Therefore, we have evaluated bulk magnetic parameters of standard palaeomagnetic samples collected along several sections across the sediments hosting the Foum Zguid dyke in southern Morocco. The study has been completed with the evaluation of the magnetic fabric after laboratory application of sequential heating experiments. The present study shows that: (1) close to Fourn Zguid dykes, the variations of the bulk magnetic parameters and of the magnetic fabric is strongly related with re-crystallization and Fe-metasomatism intensity. (2) The thermal experiments on AMS of samples collected farther from the dyke and, thus, less affected by heating during dyke emplacement, indicate that 300-400 degrees C is the minimum experimental temperature necessary to trigger appreciable transformations of the pre-existing magnetic fabrics. For temperatures higher than ca. 580 degrees C, the magnetic fabric transformations are fully realized, with complete transposition of the initial fabric to a fabric similar to that of samples collected close to the dyke. Therefore, measured variations of the magnetic fabric can be used to evaluate re-crystallization temperatures experienced by the host sedimentary rock during dyke emplacement. The distinct magnetic behaviour observed along the cross-sections strongly suggests that samples collected farther from the dyke margins did not experience thermal episodes with temperatures higher than 300 degrees C after dyke emplacement. (3) AMS data shows a gradual variation of the magnetic fabric with distance from the dyke margin, from sub-horizontal K-3 away from the dyke to vertical K3 close to the dyke. Experimental heating shows that heat alone can be responsible for this strong variation. Therefore, such orientation changes should not be unequivocally interpreted as the result of a stress field (resulting from the emplacement of the dyke, for instance). (4) Magnetic studies prove to be a very sensitive tool to assess rock magnetic transformations, thermally and chemically induced by dyke intrusion in hosting sediments.
Resumo:
Background: Malaria, schistosomiasis and geohelminth infection are linked to maternal and child morbidity and mortality in sub-Saharan Africa. Knowing the prevalence levels of these infections is vital to guide governments towards the implementation of successful and cost-effective disease control initiatives. Methodology/Principal Findings: A cross-sectional study of 1,237 preschool children (0–5 year olds), 1,142 school-aged children (6–15 year olds) and 960 women (.15 year olds) was conducted to understand the distribution of malnutrition, anemia, malaria, schistosomiasis (intestinal and urinary) and geohelminths in a north-western province of Angola. We used a recent demographic surveillance system (DSS) database to select and recruit suitable households. Malnutrition was common among children (23.3% under-weight, 9.9% wasting and 32.2% stunting), and anemia was found to be a severe public health problem (i.e., .40%). Malaria prevalence was highest among preschool children reaching 20.2%. Microhematuria prevalence levels reached 10.0% of preschool children, 16.6% of school-aged children and 21.7% of mothers. Geohelminth infections were common, affecting 22.3% of preschool children, 31.6% of school-aged children and 28.0% of mothers. Conclusions: Here we report prevalence levels of malaria, schistosomiasis and geohelminths; all endemic in this poorly described area where a DSS has been recently established. Furthermore we found evidence that the studied infections are associated with the observed levels of anemia and malnutrition, which can justify the implementation of integrated interventions for the control of these diseases and morbidities.
Resumo:
Cancer is a national and international health care concern. It’s important to find strategies for early diagnosis as well as for the optimization of the various therapeutic options currently existing in Portugal. Cancer is the second leading cause of death in Portugal, the choice of this study, is due to the importance of radiotherapy approach in cancer treatment and because is the therapy used in 40% of oncology patients. Radiation therapy has evolve data technological level, that allows new treatment techniques that are more efficient and that also promotes greater professional satisfaction. The hadrons are charged particles, used in cancer therapy. These particles can bring a paradigm shift regarding the therapeutic approach in radiotherapy. The technique used is proton therapy, that reveal to be more accurate, efficacious and less toxic to surrounding tissue. Proton therapy may be a promising development in the field of oncology and how the treatment is given in radiotherapy. Although there is awareness of the benefits of proton therapy in oncology it’s also important to take in consideration the costs of these therapy, because they are considerably higher than conventional treatments of radiotherapy. Given the lack of a proton therapy service in Portugal, this study aims to be a documentary analysis of clinical records that will achieve the following objectives: to identify the number of cancer patients diagnosed in 2010 in Portugal and to calculate the estimated number of patients that could have been treated with proton therapy according to the Health Council of the Netherlands registration document.
Resumo:
The design of magnetic cores can be carried out by taking into account the optimization of different parameters in accordance with the application requirements. Considering the specifications of the fast field cycling nuclear magnetic resonance (FFC-NMR) technique, the magnetic flux density distribution, at the sample insertion volume, is one of the core parameters that needs to be evaluated. Recently, it has been shown that the FFC-NMR magnets can be built on the basis of solenoid coils with ferromagnetic cores. Since this type of apparatus requires magnets with high magnetic flux density uniformity, a new type of magnet using a ferromagnetic core, copper coils, and superconducting blocks was designed with improved magnetic flux density distribution. In this paper, the designing aspects of the magnet are described and discussed with emphasis on the improvement of the magnetic flux density homogeneity (Delta B/B-0) in the air gap. The magnetic flux density distribution is analyzed based on 3-D simulations and NMR experimental results.