18 resultados para amplification
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Characteristics of tunable wavelength pi'n/pin filters based on a-SiC:H multilayered stacked cells are studied both experimental and theoretically. Results show that the device combines the demultiplexing operation with the simultaneous photodetection and self amplification of the signal. An algorithm to decode the multiplex signal is established. A capacitive active band-pass filter model is presented and supported by an electrical simulation of the state variable filter circuit. Experimental and simulated results show that the device acts as a state variable filter. It combines the properties of active high-pass and low-pass filter sections into a capacitive active band-pass filter using a changing photo capacitance to control the power delivered to the load.
Resumo:
Characteristics of tunable wavelength pi'n/pin filters based on a-SiC:H multilayered stacked cells are studied both experimentally and theoretically. Results show that the device combines the demultiplexing operation with the simultaneous photodetection and self amplification of the signal. An algorithm to decode the multiplex signal is established. A capacitive active band-pass filter model is presented and supported by an electrical simulation of the state variable filter circuit. Experimental and simulated results show that the device acts as a state variable filter. It combines the properties of active high-pass and low-pass filter sections into a capacitive active band-pass filter using a changing capacitance to control the power delivered to the load.
Resumo:
Formaldehyde (FA), also known as formalin, formal and methyl aldehydes, is a colorless, flammable, strong-smelling gas. It has an important application in embalming tissues and that result in exposures for workers in the pathology anatomy laboratories and mortuaries. Occupational exposure to FA has been shown to induce nasopharyngeal cancer and has been classified as carcinogenic to humans (group 1) on the basis of sufficient evidence in humans and sufficient evidence in experimental animals. Manifold in vitro studies clearly indicated that FA is genotoxic. FA induced various genotoxic effects in proliferating cultured mammalian cells. The cytokinesis-block micronucleus (CBMN) assay was originally developped as an ideal system form easuring micronucleus (MN), however it can also be used to measure nucleoplasmic bridges (NBP) and nuclear buds (NBUD). Over the past decade another unique mechanism of micronucleus formation, known as nuclear budding has emerged. NBUDS is considered as a marker of gene amplification and/or altered gene dosage because the nuclear budding process is the mechanism by which cells removed amplified and/excess DNA.
Resumo:
The interplay of seasonality, the system's nonlinearities and intrinsic stochasticity, is studied for a seasonally forced susceptible-exposed-infective-recovered stochastic model. The model is explored in the parameter region that corresponds to childhood infectious diseases such as measles. The power spectrum of the stochastic fluctuations around the attractors of the deterministic system that describes the model in the thermodynamic limit is computed analytically and validated by stochastic simulations for large system sizes. Size effects are studied through additional simulations. Other effects such as switching between coexisting attractors induced by stochasticity often mentioned in the literature as playing an important role in the dynamics of childhood infectious diseases are also investigated. The main conclusion is that stochastic amplification, rather than these effects, is the key ingredient to understand the observed incidence patterns.
Resumo:
A visible/near-infrared optical sensor based on an ITO/SiOx/n-Si structure with internal gain is presented. This surface-barrier structure was fabricated by a low-temperature processing technique. The interface properties and carder transport were investigated from dark current-voltage and capacitance-voltage characteristics. Examination of the multiplication properties was performed under different light excitation and reverse bias conditions. The spectral and pulse response characteristics are analysed. The current amplification mechanism is interpreted by the control of electron current by the space charge of photogenerated holes near the SiOx/Si interface. The optical sensor output characteristics and some possible device applications are presented.
Resumo:
Characteristics of tunable wavelength filters based on a-SiC:H multi-layered stacked cells are studied both theoretically and experimentally. Results show that the light-activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal. The sensor is a bias wavelength current-controlled device that make use of changes in the wavelength of the background to control the power delivered to the load, acting a photonic active filter. Its gain depends on the background wavelength that controls the electrical field profile across the device.
Resumo:
Fluorescence confocal microscopy (FCM) is now one of the most important tools in biomedicine research. In fact, it makes it possible to accurately study the dynamic processes occurring inside the cell and its nucleus by following the motion of fluorescent molecules over time. Due to the small amount of acquired radiation and the huge optical and electronics amplification, the FCM images are usually corrupted by a severe type of Poisson noise. This noise may be even more damaging when very low intensity incident radiation is used to avoid phototoxicity. In this paper, a Bayesian algorithm is proposed to remove the Poisson intensity dependent noise corrupting the FCM image sequences. The observations are organized in a 3-D tensor where each plane is one of the images acquired along the time of a cell nucleus using the fluorescence loss in photobleaching (FLIP) technique. The method removes simultaneously the noise by considering different spatial and temporal correlations. This is accomplished by using an anisotropic 3-D filter that may be separately tuned in space and in time dimensions. Tests using synthetic and real data are described and presented to illustrate the application of the algorithm. A comparison with several state-of-the-art algorithms is also presented.
Resumo:
Combined tunable WDM converters based on SiC multilayer photonic active filters are analyzed. The operation combines the properties of active long-pass and short-pass wavelength filter sections into a capacitive active band-pass filter. The sensor element is a multilayered heterostructure produced by PE-CVD. The configuration includes two stacked SiC p-i-n structures sandwiched between two transparent contacts. Transfer function characteristics are studied both theoretically and experimentally. Results show that optical bias activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal acting the device as an integrated photonic filter in the visible range. Depending on the wavelength of the external background and irradiation side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. A numerical simulation and two building-blocks active circuit is presented and gives insight into the physics of the device.
Resumo:
WDM multilayered SiC/Si devices based on a-Si:H and a-SiC:H filter design are approached from a reconfigurable point of view. Results show that the devices, under appropriated optical bias, act as reconfigurable active filters that allow optical switching and optoelectronic logic functions development. Under front violet irradiation the magnitude of the red and green channels are amplified and the blue and violet reduced. Violet back irradiation cuts the red channel, slightly influences the magnitude of the green and blue ones and strongly amplifies de violet channel. This nonlinearity provides the possibility for selective removal of useless wavelengths. Particular attention is given to the amplification coefficient weights, which allow taking into account the wavelength background effects when a band needs to be filtered from a wider range of mixed signals, or when optical active filter gates are used to select and filter input signals to specific output ports in WDM communication systems. A truth table of an encoder that performs 8-to-1 multiplexer (MUX) function is presented.
Resumo:
The aim of the present work was to investigate the wetting behaviour of biomedical grade Ti-6Al-4V alloy surfaces textured by a femtosecond laser treatment. The material was treated in ambient atmosphere using an Yb: KYW chirped-pulse-regenerative amplification laser with a wavelength of 1030 nm and a pulse duration of 500 fs. Four main types of surface textures were obtained depending on the processing parameters and laser treatment method. These textures consist of: (1) nanoscale laser-induced periodic surface structures (LIPSS); (2) nanopillars; (3) a bimodal roughness distribution texture formed of LIPSS overlapping microcolumns; (4) a complex texture formed of LIPSS overlapping microcolumns with a periodic variation of the columns size in the laser scanning direction. The wettability of the surfaces was evaluated by the sessile drop method using distilled-deionized (DD) water and Hank's balanced salt solution (HBSS) as testing liquids. The laser treated surfaces present a hydrophilic behaviour as well as a high affinity for the saline solution, with equilibrium contact angles in the ranges 24.1-76.2. for DD water and 8.4-61.8. for HBSS. The wetting behaviour is anisotropic, reflecting the anisotropy of the surface textures. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Multilayered heterostructures based on embedded a-Si:H and a-SiC:H p-i-n filters are analyzed from differential voltage design perspective using short- and long-pass filters. The transfer functions characteristics are presented. A numerical simulation is presented to explain the filtering properties of the photonic devices. Several monochromatic pulsed lights, separately (input channels) or in a polychromatic mixture (multiplexed signal) at different bit rates, illuminated the device. Steady-state optical bias is superimposed from the front and the back side. Results show that depending on the wavelength of the external background and impinging side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. Particular attention is given to the amplification coefficient weights, which allow to take into account the wavelength background effects when a band or frequency needs to be filtered or the gate switch, in which optical active filter gates are used to select and filter input signals to specific output ports in wavelength division multiplexing (WDM) communication systems. This nonlinearity provides the possibility for selective removal or addition of wavelengths. A truth table of an encoder that performs 8-to-1 MUX function exemplifies the optoelectronic conversion.
Resumo:
Tunable wavelength division multiplexing converters based on amorphous SiC multilayer photonic active filters are analyzed. The configuration includes two stacked p-i-n structures (p(a-SiC:H)-i'(a-SiC:H)-n(a-SiC:H)-p(a-SiC:H)-i(a-Si:H)-n(a-Si:H)) sandwiched between two transparent contacts. The manipulation of the magnitude is achieved through appropriated front and back backgrounds. Transfer function characteristics are studied both theoretically and experimentally. An algorithm to decode the multiplex signal is established. An optoelectronic model supports the optoelectronic logic architecture. Results show that the light-activated device combines the demultiplexing operation with the simultaneous photodetection and self-amplification of an optical signal. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. Depending on the wavelength of the external background and irradiation side, it acts either as a short- or a long-pass band filter or as a band-stop filter. A two-stage active circuit is presented and gives insight into the physics of the device.
Resumo:
Combined tunable WDM converters based on SiC multilayer photonic active filters are analyzed. The operation combines the properties of active long-pass and short-pass wavelength filter sections into a capacitive active band-pass filter. The sensor element is a multilayered heterostructure produced by PE-CVD. The configuration includes two stacked SiC p-i-n structures sandwiched between two transparent contacts. Transfer function characteristics are studied both theoretically and experimentally. Results show that optical bias activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal acting the device as an integrated photonic filter in the visible range. Depending on the wavelength of the external background and irradiation side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. A numerical simulation and a two building-blocks active circuit are presented and give insight into the physics of the device. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
Desde o início da utilização da imunohistoquímica em anatomia patológica, um dos objetivos tem sido detetar as quantidades mais ínfimas de antigénio, tornando-o visível ao microscópio ótico. Vários sistemas de amplificação têm sido aplicados de forma a concretizar este objetivo, tendo surgido um grupo genérico de métodos simples e que apresentam uma amplificação superior: são os denominados métodos do polímero indireto. Tendo em conta a variedade de métodos disponíveis, o autor propõe-se a comparar a qualidade de quatro sistemas de amplificação, que recorrem ao método do polímero indireto com horseradish peroxidase (HRP). Foram utilizadas lâminas de diferentes tecidos, fixados em formol e incluídos em parafina, nos quais se procedeu à identificação de 15 antigénios distintos. Na amplificação recorreu-se a quatro sistemas de polímero indireto (Dako EnVision+ System – K4006; LabVision UltraVision LP Detection System – TL-004-HD; Leica NovoLink – RE7140-k; Vector ImmPRESS Reagent Kit – MP-7402). A observação microscópica e classificação da imunomarcação obtida foram feitas com base num algoritmo que enquadra intensidade, marcação específica, marcação inespecífica e contraste, num score global que pode tomar valores entre 0 e 25. No tratamento dos dados, para além da estatística descritiva, foi utilizado o teste one-way ANOVA com posthoc de tukey (alfa=0.05). O melhor resultado obtido, em termos de par média/desvio-padrão, dos scores globais foi o do NovoLink (22,4/2,37) e o pior foi o do EnVision+ (17,43/3,86). Verificou-se ainda que existe diferença estatística entre os resultados obtidos pelo sistema NovoLink e os sistemas UltraVision (p=.004), ImmPRESS (p=.000) e EnVision+ (p=.000). Concluiu-se que o sistema que permitiu a obtenção de melhores resultados, neste estudo, foi o Leica NovoLink.
Resumo:
High loads of fungi have been reported in different types of waste management plants. This study intends to assess fungal contamination in one waste-sorting plant before and after cleaning procedures in order to analyze their effectiveness. Air samples of 50 L were collected through an impaction method, while surface samples, taken at the same time, were collected by the swabbing method and subject to further macro- and microscopic observations. In addition, we collected air samples of 250 L using the impinger Coriolis μ air sampler (Bertin Technologies) at 300 L/min airflow rate in order to perform real-time quantitative PCR (qPCR) amplification of genes from specific fungal species, namely Aspergillus fumigatus and Aspergillus flavus complexes, as well as Stachybotrys chartarum species. Fungal quantification in the air ranged from 180 to 5,280 CFU m−3 before cleaning and from 220 to 2,460 CFU m−3 after cleaning procedures. Surfaces presented results that ranged from 29 × 104 to 109 × 104 CFU m−2 before cleaning and from 11 × 104 to 89 × 104 CFU m−2 after cleaning. Statistically significant differences regarding fungal load were not detected between before and after cleaning procedures. Toxigenic strains from A. flavus complex and S. chartarum were not detected by qPCR. Conversely, the A. fumigatus species was successfully detected by qPCR and interestingly it was amplified in two samples where no detection by conventional methods was observed. Overall, these results reveal the inefficacy of the cleaning procedures and that it is important to determine fungal burden in order to carry out risk assessment.