17 resultados para Wideband antenna
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The big proliferation of mobile communication systems has caused an increased concern about the interaction between the human body and the antennas of mobile handsets. In order to study the problem, a multiband antenna was designed, fabricated and measured to operate over two frequency sub bands 900 and 1800 MHz. After that, we simulated the same antenna, but now, in the presence of a human head model to analyze the head's influence. First, the influence of the human head on the radiation efficiency of the antenna has been investigated as a function of the distance between the head and the antenna and with the inclination of the antenna. Furthermore, the relative amount of the electromagnetic power absorbed in the head has been obtained.
Resumo:
The big proliferation of mobile communication systems has caused an increased concern about the interaction between the human body and the antennas of mobile handsets. In order to study the problem, a multiband antenna was designed, fabricated and measured to operate over two frequency sub bands 900 and 1800 MHz. After that, we simulated the same antenna, but now, in the presence of a human head model to analyze the head's influence. First, the influence of the human head on the radiation efficiency of the antenna has been investigated as a function of the distance between the head and the antenna and with the inclination of the antenna. Furthermore, the relative amount of the electromagnetic power absorbed in the head has been obtained. In this study the electromagnetic analysis has been performed via FDTD (Finite Difference Time Domain).
Resumo:
This paper describes the design of a textile microstrip antenna for 2.4 GHz. Two different fabrics are used: one for the dielectric part and another one for the conductor part. The dielectric constant of the dielectric fabric is determined experimentally. The input matching is studied by electromagnetic simulation and experimentally. Since the antenna is meant to be incorporated in the user's clothe, the effect that the antenna bending has on the matching level is also investigated both theoretically and experimentally.
Resumo:
Dedicated Short Range Communications (DSRC) is the key enabling technology for the present and future vehicular communication for various applications, such as safety improvement and traffic jam mitigation. This paper describes the development of a microstrip antenna array for the roadside equipment of a DSRC system, whose characteristics are according with the vehicular communications standards. The proposed antenna, with circular polarization, has a wide bandwidth, enough to cover the current European DSRC 5.8 GHz band and the future 5.9 GHz band for next generation DSRC communications. (C) 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53: 2794-2796, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26394
Resumo:
MultiBand OFDM (MB-OFDM) UWB [1] is a short-range promising wireless technology for high data rate communications up to 480 Mbps. In this paper, we have designed and implemented in an Virtex-6 FPGA an MB-OFDM UWB receiver for the highest data rate of 480 Mbps. To test the system, we have also implemented an MB-OFDM transmitter and an AWGN generator in VHDL and determined the bit error rates at the receiver running in an FPGA.
Resumo:
In this paper, the design of low profile antennas by using Electromagnetic Band Gap (EBG) structures is introduced. Taking advantage of the fact that they can behave as Perfect Magnetic Conductor (PMC), it is shown that these structures exhibit dual band in-phase reflection at WLAN (Wireless Local Area Network) bands, the 2.4 GHz and 5.2 GHz bands. These structures are applied to PIFA (Planar Inverted-F Antenna) and the results show that it is possible to obtain low profile PIFA's.
Resumo:
This paper presents the design methodology for the creation of corrugated horn antennas for the CosmoGal satellite. The mission will collect the radiation of the cosmic microwave background, by a radiometer in three different radio astronomy frequency bands (10.6-10.7GHz; 15.35-15.4GHz; 23.6-24GHz). It is discussed the design of several types of horns, simulated with the CST software. The best result points to a choked Gaussian corrugated horn antenna, with directivity of 23 dBi, side lobes 35 dB below and cross polarization better than -45 dB. Plus, with the advantage of having a small dimension, with a total length of only 7.43λ © 2014 IEEE.
Resumo:
The urgent need to mitigate traffic problems such as accidents, road hazards, pollution and traffic jam have strongly driven the development of vehicular communications. DSRC (Dedicated Short Range Communications) is the technology of choice in vehicular communications, enabling real time information exchange among vehicles V2V (Vehicle-to-Vehicle) and between vehicles and infrastructure V2I (Vehicle-Infrastructure). This paper presents a receiving antenna for a single lane DSRC control unit. The antenna is a non-uniform array with five microstrip patches. The obtained beam width, bandwidth and circular polarization quality, among other characteristics, are compatible with the DSRC standards, making this antenna suitable for this application. © 2014 IEEE.
Resumo:
In this paper we propose a possible design for a RFID tag antenna embedded into cork. The antenna is small and conformal and intended to be used into bottle stoppers for tracking and logging purposes of wine or other beverages. The proposed design is based on an inductive ring and an added resistance in order to modify the current distributions of the antenna. The resulting antenna has a relatively directive radiation pattern and despite the small efficiency it is able to operate with a commercial RFID reader at a reasonable distance. © 2014 IEEE.
Resumo:
Wireless communications are widely used for various applications, requiring antennas with different features. Often, to achieve the desired radiation pattern, is necessary to employ antenna arrays, using non-uniform excitation on its elements. Power dividers can be used and the best known are the T-junction and the Wilkinson power divider, whose main advantage is the isolation between output ports. In this paper the impact of this isolation on the overall performance of a circularly polarized planar antenna array using non-uniform excitation is investigated. Results show a huge decrease of the array bandwidths either in terms of return loss or in polarization, without resistors. © 2014 IEEE.
Resumo:
In this paper we present a possible design for a passive RFID tag antenna on paper substrate to be integrated into bottle labels. Considering the application scenario, we verified and determined the permittivity and dissipation factor of the materials in order to simulate all the possible sources that would influence the antenna performance. The measured results reported a maximum reading range of 1.45 m even though the efficiency obtained with the antenna integrated into the bottle was only of 3%. © 2014 IEEE.
Resumo:
This paper proposes a possible implementation of a compact printed monopole antenna, useful to operate in UMTS and WLAN bands. In order to accomplish that, a miniaturization technique based on the application of chip inductors is used in conjunction with frequency reconfiguration capability. The chip inductors change the impedance response of the monopole, allowing to reduce the resonant frequency. In order to be able to operate the antenna in these two different frequencies, an antenna reconfiguration technique based on PIN diodes is applied. This procedure allows the change of the active form of the antenna leading to a shift in the resonant frequency. The prototype measurements show good agreement with the simulation results.
Resumo:
A pentagonal patch-excited sectorized antenna (SA) suitable for 2.4-2.5 GHz localization systems was studied and developed. The integration of six patch-excited structures converges into a sectorized antenna called Hive5 that provides gain improvement compared to a patch antenna, maximum variation of 3 dB beam width over the radiation pattern and circular polarization (CP). This antenna is presented and analyzed taking into account the tap length and the flare angle. The proposed antenna in combination with a RF-Switch provides a cost effective solution for localization based on Wireless Sensor Networks (WSN) and will be used for implementing angle of arrival (AoA) techniques combined with RF fingerprinting techniques.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestrado em Engenharia Electrónica e Telecomunicações
Resumo:
An adaptive antenna array combines the signal of each element, using some constraints to produce the radiation pattern of the antenna, while maximizing the performance of the system. Direction of arrival (DOA) algorithms are applied to determine the directions of impinging signals, whereas beamforming techniques are employed to determine the appropriate weights for the array elements, to create the desired pattern. In this paper, a detailed analysis of both categories of algorithms is made, when a planar antenna array is used. Several simulation results show that it is possible to point an antenna array in a desired direction based on the DOA estimation and on the beamforming algorithms. A comparison of the performance in terms of runtime and accuracy of the used algorithms is made. These characteristics are dependent on the SNR of the incoming signal.