10 resultados para Web Mining, Data Mining, User Topic Model, Web User Profiles

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is an elaboration of the DECA algorithm [1] to blindly unmix hyperspectral data. The underlying mixing model is linear, meaning that each pixel is a linear mixture of the endmembers signatures weighted by the correspondent abundance fractions. The proposed method, as DECA, is tailored to highly mixed mixtures in which the geometric based approaches fail to identify the simplex of minimum volume enclosing the observed spectral vectors. We resort then to a statitistical framework, where the abundance fractions are modeled as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. With respect to DECA, we introduce two improvements: 1) the number of Dirichlet modes are inferred based on the minimum description length (MDL) principle; 2) The generalized expectation maximization (GEM) algorithm we adopt to infer the model parameters is improved by using alternating minimization and augmented Lagrangian methods to compute the mixing matrix. The effectiveness of the proposed algorithm is illustrated with simulated and read data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A preocupação sobre a qualidade do ar nas zonas industriais confere aos estudos sobre a qualidade do ar uma importância acrescida. Este trabalho teve como objectivo saber qual a contribuição dos principais poluentes provenientes do tráfego automóvel para a qualidade do ar na zona do parque industrial da Sapec, da Península da Mitrena, concelho de Setúbal, recorrendo ao modelo meteorológico e de qualidade do ar, TAPM (The Air Pollution Model). Neste trabalho analisaram-se dados da estação de monitorização da qualidade do ar, mais próxima da zona de estudo (Subestação) por forma a caracterizar-se a zona em causa, a nível meteorológico e da qualidade do ar. Os dados metereológico desta estação também foram utilizados com o objectivo de se validar os resultados meteorológicos obtidos pelo modelo. Na avaliação da contribuição do tráfego para a qualidade do ar, recorreu-se a um estudo de tráfego realizado pela Estradas de Portugal (EP) em 2004. Este estudo realizou a contagem dos veículos que se dirigiram ao parque industrial nos dias 14 e 15 de Dezembro, num período de 24 horas. A partir dessa contagem e de factores de emissão foi possível determinar a contribuição, de cada classe de veículo, para as concentrações atmosféricas de PM10 (resultantes de processos de combustão e ressuspensão), NOx, CO e HC. A comparação entre os dados meteorológicos simulados e medidos mostram que o modelo teve um bom comportamento, isto é, as discrepâncias entre os valores simulados e medidos foram mínimas. Relativamente à contribuição de cada categoria de veículos para a qualidade do ar, verificou-se que a classe de pesados de mercadorias foi aquela que mais contribui para as emissões de PM10, NOx e HC, enquanto que para as emissões de CO foram os veículos ligeiros de passageiros que tiveram uma maior contribuição. As classes dos motociclos e ciclomotores foram aquelas que tiveram uma menor contribuição para as concentrações atmosféricas de poluentes. Comparando as emissões de PM10 provenientes dos processos de combustão e de ressuspensão conclui-se que a maior percentagem provem da ressuspensão.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Informática

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Informática e de Computadores

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the advent of wearable sensing and mobile technologies, biosignals have seen an increasingly growing number of application areas, leading to the collection of large volumes of data. One of the difficulties in dealing with these data sets, and in the development of automated machine learning systems which use them as input, is the lack of reliable ground truth information. In this paper we present a new web-based platform for visualization, retrieval and annotation of biosignals by non-technical users, aimed at improving the process of ground truth collection for biomedical applications. Moreover, a novel extendable and scalable data representation model and persistency framework is presented. The results of the experimental evaluation with possible users has further confirmed the potential of the presented framework.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Data analytic applications are characterized by large data sets that are subject to a series of processing phases. Some of these phases are executed sequentially but others can be executed concurrently or in parallel on clusters, grids or clouds. The MapReduce programming model has been applied to process large data sets in cluster and cloud environments. For developing an application using MapReduce there is a need to install/configure/access specific frameworks such as Apache Hadoop or Elastic MapReduce in Amazon Cloud. It would be desirable to provide more flexibility in adjusting such configurations according to the application characteristics. Furthermore the composition of the multiple phases of a data analytic application requires the specification of all the phases and their orchestration. The original MapReduce model and environment lacks flexible support for such configuration and composition. Recognizing that scientific workflows have been successfully applied to modeling complex applications, this paper describes our experiments on implementing MapReduce as subworkflows in the AWARD framework (Autonomic Workflow Activities Reconfigurable and Dynamic). A text mining data analytic application is modeled as a complex workflow with multiple phases, where individual workflow nodes support MapReduce computations. As in typical MapReduce environments, the end user only needs to define the application algorithms for input data processing and for the map and reduce functions. In the paper we present experimental results when using the AWARD framework to execute MapReduce workflows deployed over multiple Amazon EC2 (Elastic Compute Cloud) instances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho de Projeto realizado para obtenção do grau de Mestre em Engenharia Informática e de Computadores

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses the results of applied research on the eco-driving domain based on a huge data set produced from a fleet of Lisbon's public transportation buses for a three-year period. This data set is based on events automatically extracted from the control area network bus and enriched with GPS coordinates, weather conditions, and road information. We apply online analytical processing (OLAP) and knowledge discovery (KD) techniques to deal with the high volume of this data set and to determine the major factors that influence the average fuel consumption, and then classify the drivers involved according to their driving efficiency. Consequently, we identify the most appropriate driving practices and styles. Our findings show that introducing simple practices, such as optimal clutch, engine rotation, and engine running in idle, can reduce fuel consumption on average from 3 to 5l/100 km, meaning a saving of 30 l per bus on one day. These findings have been strongly considered in the drivers' training sessions.