13 resultados para Wavelet Packet and Support Vector Machine
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Chronic liver disease (CLD) is most of the time an asymptomatic, progressive, and ultimately potentially fatal disease. In this study, an automatic hierarchical procedure to stage CLD using ultrasound images, laboratory tests, and clinical records are described. The first stage of the proposed method, called clinical based classifier (CBC), discriminates healthy from pathologic conditions. When nonhealthy conditions are detected, the method refines the results in three exclusive pathologies in a hierarchical basis: 1) chronic hepatitis; 2) compensated cirrhosis; and 3) decompensated cirrhosis. The features used as well as the classifiers (Bayes, Parzen, support vector machine, and k-nearest neighbor) are optimally selected for each stage. A large multimodal feature database was specifically built for this study containing 30 chronic hepatitis cases, 34 compensated cirrhosis cases, and 36 decompensated cirrhosis cases, all validated after histopathologic analysis by liver biopsy. The CBC classification scheme outperformed the nonhierachical one against all scheme, achieving an overall accuracy of 98.67% for the normal detector, 87.45% for the chronic hepatitis detector, and 95.71% for the cirrhosis detector.
Resumo:
In this work the identification and diagnosis of various stages of chronic liver disease is addressed. The classification results of a support vector machine, a decision tree and a k-nearest neighbor classifier are compared. Ultrasound image intensity and textural features are jointly used with clinical and laboratorial data in the staging process. The classifiers training is performed by using a population of 97 patients at six different stages of chronic liver disease and a leave-one-out cross-validation strategy. The best results are obtained using the support vector machine with a radial-basis kernel, with 73.20% of overall accuracy. The good performance of the method is a promising indicator that it can be used, in a non invasive way, to provide reliable information about the chronic liver disease staging.
Resumo:
In this work liver contour is semi-automatically segmented and quantified in order to help the identification and diagnosis of diffuse liver disease. The features extracted from the liver contour are jointly used with clinical and laboratorial data in the staging process. The classification results of a support vector machine, a Bayesian and a k-nearest neighbor classifier are compared. A population of 88 patients at five different stages of diffuse liver disease and a leave-one-out cross-validation strategy are used in the classification process. The best results are obtained using the k-nearest neighbor classifier, with an overall accuracy of 80.68%. The good performance of the proposed method shows a reliable indicator that can improve the information in the staging of diffuse liver disease.
Resumo:
Chronic Liver Disease is a progressive, most of the time asymptomatic, and potentially fatal disease. In this paper, a semi-automatic procedure to stage this disease is proposed based on ultrasound liver images, clinical and laboratorial data. In the core of the algorithm two classifiers are used: a k nearest neighbor and a Support Vector Machine, with different kernels. The classifiers were trained with the proposed multi-modal feature set and the results obtained were compared with the laboratorial and clinical feature set. The results showed that using ultrasound based features, in association with laboratorial and clinical features, improve the classification accuracy. The support vector machine, polynomial kernel, outperformed the others classifiers in every class studied. For the Normal class we achieved 100% accuracy, for the chronic hepatitis with cirrhosis 73.08%, for compensated cirrhosis 59.26% and for decompensated cirrhosis 91.67%.
Resumo:
Actualmente tem-se observado um aumento do volume de sinais de fala em diversas aplicações, que reforçam a necessidade de um processamento automático dos ficheiros. No campo do processamento automático destacam-se as aplicações de “diarização de orador”, que permitem catalogar os ficheiros de fala com a identidade de oradores e limites temporais de fala de cada um, através de um processo de segmentação e agrupamento. No contexto de agrupamento, este trabalho visa dar continuidade ao trabalho intitulado “Detecção do Orador”, com o desenvolvimento de um algoritmo de “agrupamento multi-orador” capaz de identificar e agrupar correctamente os oradores, sem conhecimento prévio do número ou da identidade dos oradores presentes no ficheiro de fala. O sistema utiliza os coeficientes “Mel Line Spectrum Frequencies” (MLSF) como característica acústica de fala, uma segmentação de fala baseada na energia e uma estrutura do tipo “Universal Background Model - Gaussian Mixture Model” (UBM-GMM) adaptado com o classificador “Support Vector Machine” (SVM). No trabalho foram analisadas três métricas de discriminação dos modelos SVM e a avaliação dos resultados foi feita através da taxa de erro “Speaker Error Rate” (SER), que quantifica percentualmente o número de segmentos “fala” mal classificados. O algoritmo implementado foi ajustado às características da língua portuguesa através de um corpus com 14 ficheiros de treino e 30 ficheiros de teste. Os ficheiros de treino dos modelos e classificação final, enquanto os ficheiros de foram utilizados para avaliar o desempenho do algoritmo. A interacção com o algoritmo foi dinamizada com a criação de uma interface gráfica que permite receber o ficheiro de teste, processá-lo, listar os resultados ou gerar um vídeo para o utilizador confrontar o sinal de fala com os resultados de classificação.
Resumo:
Many learning problems require handling high dimensional datasets with a relatively small number of instances. Learning algorithms are thus confronted with the curse of dimensionality, and need to address it in order to be effective. Examples of these types of data include the bag-of-words representation in text classification problems and gene expression data for tumor detection/classification. Usually, among the high number of features characterizing the instances, many may be irrelevant (or even detrimental) for the learning tasks. It is thus clear that there is a need for adequate techniques for feature representation, reduction, and selection, to improve both the classification accuracy and the memory requirements. In this paper, we propose combined unsupervised feature discretization and feature selection techniques, suitable for medium and high-dimensional datasets. The experimental results on several standard datasets, with both sparse and dense features, show the efficiency of the proposed techniques as well as improvements over previous related techniques.
Resumo:
Arguably, the most difficult task in text classification is to choose an appropriate set of features that allows machine learning algorithms to provide accurate classification. Most state-of-the-art techniques for this task involve careful feature engineering and a pre-processing stage, which may be too expensive in the emerging context of massive collections of electronic texts. In this paper, we propose efficient methods for text classification based on information-theoretic dissimilarity measures, which are used to define dissimilarity-based representations. These methods dispense with any feature design or engineering, by mapping texts into a feature space using universal dissimilarity measures; in this space, classical classifiers (e.g. nearest neighbor or support vector machines) can then be used. The reported experimental evaluation of the proposed methods, on sentiment polarity analysis and authorship attribution problems, reveals that it approximates, sometimes even outperforms previous state-of-the-art techniques, despite being much simpler, in the sense that they do not require any text pre-processing or feature engineering.
Resumo:
This paper is a contribution for the assessment and comparison of magnet properties based on magnetic field characteristics particularly concerning the magnetic induction uniformity in the air gaps. For this aim, a solver was developed and implemented to determine the magnetic field of a magnetic core to be used in Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometry. The electromagnetic field computation is based on a 2D finite-element method (FEM) using both the scalar and the vector potential formulation. Results for the magnetic field lines and the magnetic induction vector in the air gap are presented. The target magnetic induction is 0.2 T, which is a typical requirement of the FFC NMR technique, which can be achieved with a magnetic core based on permanent magnets or coils. In addition, this application requires high magnetic induction uniformity. To achieve this goal, a solution including superconducting pieces is analyzed. Results are compared with a different FEM program.
Resumo:
Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
Purpose - The education and training of a nuclear medicine technologist (NMT) is not homogeneous among European countries, which leads to different scope of practices and, therefore, different technical skills are assigned. The goal of this research was to characterize the education and training of NMT in Europe. Materials and methods - This study was based on a literature research to characterize the education and training of NMT and support the historical evolution of this profession. It was divided into two different phases: the first phase included analysis of scientific articles and the second phase included research of curricula that allow health professionals to work as NMT in Europe. Results - The majority of the countries [N=31 (89%)] offer the NMT curriculum integrated into the high education system and only in four (11%) countries the education is provided by professional schools. The duration in each education system is not equal, varying in professional schools (2-3 years) and high education level system (2-4 years), which means that different European Credit Transfer and Accumulation System, such as 240, 230, 222, 210 or 180 European Credit Transfer and Accumulation System, are attributed to the graduates. The professional title and scope of the practice of NMT are different in different countries in Europe. In most countries of Europe, nuclear medicine training is not specific and curriculum does not demonstrate the Nuclear Medicine competencies performed in clinical practice. Conclusion - The heterogeneity in education and training for NMT is an issue prevalent among European countries. For NMT professional development, there is a huge need to formalize and unify educational and training programmes in Europe.
Resumo:
In research on Silent Speech Interfaces (SSI), different sources of information (modalities) have been combined, aiming at obtaining better performance than the individual modalities. However, when combining these modalities, the dimensionality of the feature space rapidly increases, yielding the well-known "curse of dimensionality". As a consequence, in order to extract useful information from this data, one has to resort to feature selection (FS) techniques to lower the dimensionality of the learning space. In this paper, we assess the impact of FS techniques for silent speech data, in a dataset with 4 non-invasive and promising modalities, namely: video, depth, ultrasonic Doppler sensing, and surface electromyography. We consider two supervised (mutual information and Fisher's ratio) and two unsupervised (meanmedian and arithmetic mean geometric mean) FS filters. The evaluation was made by assessing the classification accuracy (word recognition error) of three well-known classifiers (knearest neighbors, support vector machines, and dynamic time warping). The key results of this study show that both unsupervised and supervised FS techniques improve on the classification accuracy on both individual and combined modalities. For instance, on the video component, we attain relative performance gains of 36.2% in error rates. FS is also useful as pre-processing for feature fusion. Copyright © 2014 ISCA.
Resumo:
We analyze the advantages and drawbacks of a vector delay/frequency-locked loop (VDFLL) architecture regarding the conventional scalar and the vector delay-locked loop (VDLL) architectures for GNSS receivers in harsh scenarios that include ionospheric scintillation, multipath, and high dynamics motion. The VDFLL is constituted by a bank of code and frequency discriminators feeding a central extended Kaiman filter (EKF) that estimates the receiver's position, velocity, and clock bias. Both code and frequency loops are closed vectorially through the EKF. The VDLL closes the code loop vectorially and the phase loops through individual PLLs while the scalar receiver closes both loops by means of individual independent PLLs and DLLs.