65 resultados para Walters’ liquid B
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
A mat of electrospun cellulose fibers are deposed on transparent conductive oxide covered glass, and two such plates enclose a nematic liquid crystal. Thus two new types of Cellulose based Polymer Dispersed Liquid Crystal devices, based on hydroxypropylcellulose and Cellulose Acetate and the nematic liquid crystal E7 have been obtained. The current-voltage characteristics indicates ionic type conduction. Heating-cooling cycles have been applied on the samples and the activation energies have been determined. Simultaneously with the thermo-stimulated currents, the optical transmission dependence on the d.c. electric field and temperature was registered. ON-OFF switching times have been determined for different control voltages. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Helically twisted fibers can be produced by electrospinning liquid-crystalline cellulose solutions. Fiber topographies are studied by atomic force microscopy, scanning electron microscopy (see figure) and polarized optical microscopy. The fibers have a nearly universal pitch-to-diameter ratio and comprise both right- and left-handed helices.
Resumo:
We investigate the liquid-vapor interface of a model of patchy colloids. This model consists of hard spheres decorated with short-ranged attractive sites ("patches") of different types on their surfaces. We focus on a one-component fluid with two patches of type A and nine patches of type B (2A9B colloids), which has been found to exhibit reentrant liquid-vapor coexistence curves and very low-density liquid phases. We have used the density-functional theory form of Wertheim's first-order perturbation theory of association, as implemented by Yu and Wu [J. Chem. Phys. 116, 7094 (2002)], to calculate the surface tension, and the density and degree of association profiles, at the liquid-vapor interface of our model. In reentrant systems, where AB bonds dominate, an unusual thickening of the interface is observed at low temperatures. Furthermore, the surface tension versus temperature curve reaches a maximum, in agreement with Bernardino and Telo da Gama's mesoscopic Landau-Safran theory [Phys. Rev. Lett. 109, 116103 (2012)]. If BB attractions are also present, competition between AB and BB bonds gradually restores the monotonic temperature dependence of the surface tension. Lastly, the interface is "hairy," i.e., it contains a region where the average chain length is close to that in the bulk liquid, but where the density is that of the vapor. Sufficiently strong BB attractions remove these features, and the system reverts to the behavior seen in atomic fluids.
Resumo:
The paper reports viscosity measurements of compressed liquid dipropyl (DPA) and dibutyl (DBA) adipates obtained with two vibrating wire sensors developed in our group. The vibrating wire instruments were operated in the forced oscillation, or steady-state mode. The viscosity measurements of DPA were carried out in a range of pressures up to 18. MPa and temperatures from (303 to 333). K, and DBA up to 65. MPa and temperature from (303 to 373). K, covering a total range of viscosities from (1.3 to 8.3). mPa. s. The required density data of the liquid samples were obtained in our laboratory using an Anton Paar vibrating tube densimeter and were reported in a previous paper. The viscosity results were correlated with density, using a modified hard-spheres scheme. The root mean square deviation of the data from the correlation is less than (0.21 and 0.32)% and the maximum absolute relative deviations are within (0.43 and 0.81)%, for DPA and DBA respectively. No data for the viscosity of both adipates could be found in the literature. Independent viscosity measurements were also performed, at atmospheric pressure, using an Ubbelohde capillary in order to compare with the vibrating wire results. The expanded uncertainty of these results is estimated as ±1.5% at a 95% confidence level. The two data sets agree within the uncertainty of both methods. © 2015 Published by Elsevier B.V.
Resumo:
An experimental and theoretical study of the electro-rheological effects observed in the nematic phase of 4-n-heptyl-4'-cyanobiphenyl has been conducted. This liquid crystal appears to be a model system, in which the observed rheological behaviour can be interpreted by the Leslie-Ericksen continuum theory for low molecular weight liquid crystals. Flow curves are illustrated at different temperatures and under the influence of an external electric field ranging from 0 to 3 kV mm-1, applied perpendicular to the direction of flow. Also presented is the apparent viscosity as a function of temperature, over similar values of electric field, obtained at different shear rates. A master flow curve has been constructed for each temperature by dividing the shear rate by the square of the electric field and multiplying by the square of a reference value of electric field. In a log-log plot, two Newtonian plateaux are found to appear at low and high shear rates, connected by a shear-thinning region. We have applied the Leslie-Ericksen continuum theory, in which the director alignment angle is a function of the electric field and the flow field boundary conditions are neglected, to determine viscoelastic parameters and the dielectric anisotropy.
Resumo:
We calculate the equilibrium thermodynamic properties, percolation threshold, and cluster distribution functions for a model of associating colloids, which consists of hard spherical particles having on their surfaces three short-ranged attractive sites (sticky spots) of two different types, A and B. The thermodynamic properties are calculated using Wertheim's perturbation theory of associating fluids. This also allows us to find the onset of self-assembly, which can be quantified by the maxima of the specific heat at constant volume. The percolation threshold is derived, under the no-loop assumption, for the correlated bond model: In all cases it is two percolated phases that become identical at a critical point, when one exists. Finally, the cluster size distributions are calculated by mapping the model onto an effective model, characterized by a-state-dependent-functionality (f) over bar and unique bonding probability (p) over bar. The mapping is based on the asymptotic limit of the cluster distributions functions of the generic model and the effective parameters are defined through the requirement that the equilibrium cluster distributions of the true and effective models have the same number-averaged and weight-averaged sizes at all densities and temperatures. We also study the model numerically in the case where BB interactions are missing. In this limit, AB bonds either provide branching between A-chains (Y-junctions) if epsilon(AB)/epsilon(AA) is small, or drive the formation of a hyperbranched polymer if epsilon(AB)/epsilon(AA) is large. We find that the theoretical predictions describe quite accurately the numerical data, especially in the region where Y-junctions are present. There is fairly good agreement between theoretical and numerical results both for the thermodynamic (number of bonds and phase coexistence) and the connectivity properties of the model (cluster size distributions and percolation locus).
Resumo:
We characterize the elastic contribution to the surface free energy of a nematic liquid crystal in the presence of a sawtooth substrate. Our findings are based on numerical minimization of the Landau-de Gennes model and analytical calculations on the Frank-Oseen theory. The nucleation of disclination lines (characterized by non-half-integer winding numbers) in the wedges and apexes of the substrate induces a leading order proportional to q ln q to the elastic contribution to the surface free-energy density, with q being the wave number associated with the substrate periodicity.
Resumo:
n a recent paper we reported an experimental study of two N-alkylimidazolium salts. These ionic compounds exhibit liquid crystalline behaviour with melting points above 50 degrees C in bulk. However, if they are sheared, a (possibly non-equilibrium) lamellar phase forms at room temperature. Upon shearing a thin film of the material between microscope slides, textures were observed that are strikingly similar to liquid (wet) foams. The images obtained from polarising optical microscopy (POM) were found to share many of the known quantitative properties of a two-dimensional foam coarsening process. Here we report an experimental study of this foam using a shearing system coupled with POM. The structure and evolution of the foam are investigated through the image analysis of time sequences of micrographs obtained for well-controlled sets of physical parameters (sample thickness, shear rate and temperature). In particular, we find that there is a threshold shear rate below which no foam can form. Above this threshold, a steady-state foam pattern is obtained where the mean cell area generally decreases with increasing shear rate. Furthermore, the steady-state internal cell angles and distribution of the cell number of sides deviate from their equilibrium (i.e. zero-shear) values.
Resumo:
A package of B-spline finite strip models is developed for the linear analysis of piezolaminated plates and shells. This package is associated to a global optimization technique in order to enhance the performance of these types of structures, subjected to various types of objective functions and/or constraints, with discrete and continuous design variables. The models considered are based on a higher-order displacement field and one can apply them to the static, free vibration and buckling analyses of laminated adaptive structures with arbitrary lay-ups, loading and boundary conditions. Genetic algorithms, with either binary or floating point encoding of design variables, were considered to find optimal locations of piezoelectric actuators as well as to determine the best voltages applied to them in order to obtain a desired structure shape. These models provide an overall economy of computing effort for static and vibration problems.
Resumo:
Este trabalho foi desenvolvido no âmbito de um projecto europeu intitulado: “Operational demonstration of innovative and sustainable nitrate elimination in stainless steel pickling by higher power biological denitrification technique” Projecto RESP-CT-2007-00047, tendo em vista o desenvolvimento de membranas para o tratamento de efluente resultante da decapagem do aço inox. Numa fase inicial foram desenvolvidas membranas compostas assimétricas pelo método de polimerização interfacial. Estas membranas foram produzidas utilizando uma membrana comercial de suporte em polietersulfona e os filmes selectivos de poliamiada foram formados por reacção entre 1,3,5-tri(clorocarboni)benzeno (TMC) e várias dinaminas: piperazina (PIP), N-(2-aminoetil)-piperazina (EAP), 1,4-bis(3-aminopropil)-piperazina (DAPP), 6-metil-1,3,5 triazina-2,4 diamina (MTC), Isoforodiamina (IPD) e Dietilenetriamina (DET). A elaboração de membranas de TFC (thin film composite) tinha como objectivo a retenção de sais do efluente resultante da decapagem do aço inox. No entanto, chegou-se a conclusão de que o principal problema do efluente não era a retenção dos sais, mas sim a retenção da matéria orgânica. Assim, já não era necessa´ria a produção de membranas compostas, mas apenas uma membrana suporte simples de microfiltração. Numa segunda fase procedeu-se a preparação da membrana suporte pelo método da inversão de fase, tendo-se testado vários tipos de polímeros: PVC (polyvinyl chloride), PEI (Polyetherimide) e um polímero termoplástico geral. A membrana seleccionada foi a de PEI, com base na sua permeabilidade à água destilada e ao efluente resultante das águas residuais da decapagem do aço inox. Todas as membranas elaboradas durante a realização deste trabalho foram testadas na célula de Berghof a uma pressão de 4bar e com agitação. O principal prâmetro estudado foi a permeabilidade da membrana.
Resumo:
Because of the adverse effect of CO2 from fossil fuel combustion on the earth's ecosystems, the most cost-effective method for CO2 capture is an important area of research. The predominant process for CO2 capture currently employed by industry is chemical absorption in amine solutions. A dynamic model for the de-absorption process was developed with monoethanolamine (MEA) solution. Henry's law was used for modelling the vapour phase equilibrium of the CO2, and fugacity ratios calculated by the Peng-Robinson equation of state (EOS) were used for H2O, MEA, N-2 and O-2. Chemical reactions between CO2 and MEA were included in the model along with the enhancement factor for chemical absorption. Liquid and vapour energy balances were developed to calculate the liquid and vapour temperature, respectively.
Resumo:
A educação de crianças com necessidades educativas especiais (NEE) coloca nos nossos dias grandes desafios às escolas e famílias. A Inclusão apresenta-se neste contexto como a expressão chave, reveladora de um novo olhar e decidir, expressa na legislação, no discurso político e nas actuais disposições académicas e pedagógicas. Não obstante, nem todos os alunos com NEE dispõem de respostas integralmente inclusivas. Os alunos com espectro de Autismo, por exemplo, colocam às escolas e aos pais sérios problemas, os quais, devido à sua intensidade e variabilidade, questionam sem dúvida o sentido das respostas educativas adequadas a alunos portadores desta problemática. O objectivo geral deste estudo é, neste contexto, procurar aceder a um conhecimento mais actualizado sobre uma Unidade de Ensino Estruturado no atendimento a alunos com espectro de Autismo (UEEA). Pretende-se de modo mais específico aceder ao que pensam os professores sobre o atendimento educativo a alunos com espectro de Autismo e caracterizar uma unidade de ensino estruturado no que respeita aos recursos humanos, físicos e materiais, bem como as estratégias de trabalho privilegiadas no atendimento a este tipo de alunos e formas de colaboração entre técnicos e famílias. No sentido de melhor compreender e aprofundar esta problemática foram realizadas entrevistas semi-directivas a 3 professores do ensino especial com experiência em UEEA e a 3 professores do ensino regular. A escolha dos professores baseou-se em critérios relacionados com a sua experiência no atendimento a alunos com problemas de Autismo. A natureza do objecto de estudo induziu a um desenho de investigação de natureza interpretativa de carácter descritivo - Estudo de caso. O corpus do trabalho foi constituído pelas entrevistas semi-directivas, sujeitas a uma análise qualitativa de acordo com os procedimentos previsto para a análise de conteúdo. Com base na análise dos dados recolhidos, foi possível identificar e caracterizar aspectos relevantes sobre o que pensam os professores sobre a intervenção educativa de alunos com espectro de Autismo e sobre as respostas educativas existentes na UEEA.
Resumo:
The origin of the Cretaceous-Paleogene boundary (KPB) mass extinction is still the center of acrimonious debates by opposing partisans of the bolide impact theory to those who favored a terrestrial origin linked to the Deccan Traps volcanism. Here we apply an original and high-resolution environmental magnetic study of the reference Bidart section, France. Our results show that the KPB is identified by an abrupt positive shift of the magnetic susceptibility (MS), also observed by others at the KPB elsewhere. In addition, an anomalous interval of very low MS, carried by an unknown Cl-bearing iron oxide similar to specular hematite, is depicted just below the KPB. Grain-size and morphology of the Cl-iron oxide are typically in the range of hematitic dust currently transported by winds from Sahara to Europe. This discovery is confirmed in the referenced Gubbio section (Italy) suggesting a global scale phenomenon. As a conjecture we suggest an origin by heterogeneous reaction between HCl-rich volcanic gas and liquid-solid aerosols within buoyant atmospheric plumes formed above the newly emitted Deccan flood basalts. Based on this hypothesis, our discovery provides a new benchmark for the Deccan volcanism and witnesses the nature and importance of the related atmospheric change.
Computational evaluation of hydraulic system behaviour with entrapped air under rapid pressurization
Resumo:
The pressurization of hydraulic systems containing entrapped air is considered a critical condition for the infrastructure's security due to transient pressure variations often occurred. The objective of the present study is the computational evaluation of trends observed in variation of maximum surge pressure resulting from rapid pressurizations. The comparison of the results with those obtained in previous studies is also undertaken. A brief state of art in this domain is presented. This research work is applied to an experimental system having entrapped air in the top of a vertical pipe section. The evaluation is developed through the elastic model based on the method of characteristics, considering a moving liquid boundary, with the results being compared with those achieved with the rigid liquid column model.
Resumo:
The present work involves the use of p-tert-butylcalix[4,6,8]arene carboxylic acid derivatives ((t)Butyl[4,6,8]CH2COOH) for selective extraction of hemoglobin. All three calixarenes extracted hemoglobin into the organic phase, exhibiting extraction parameters higher than 0.90. Evaluation of the solvent accessible positively charged amino acid side chains of hemoglobin (PDB entry 1XZ2) revealed that there are 8 arginine, 44 lysine and 30 histidine residues on the protein surface which may be involved in the interactions with the calixarene molecules. The hemoglobin-(t)Butyl[6]CH2COOH complex had pseudoperoxidase activity which catalysed the oxidation of syringaldazine in the presence of hydrogen peroxide in organic medium containing chloroform. The effect of pH, protein and substrate concentrations on biocatalysis was investigated using the hemoglobin-(t)Butyl[6]CH2COOH complex. This complex exhibited the highest specific activity of 9.92 x 10(-2) U mg protein(-1) at an initial pH of 7.5 in organic medium. Apparent kinetic parameters (V'(max), K'(m), k'(cat) and k'(cat)/K'(m)) for the pseudoperoxidase activity were determined in organic media for different pH values from a Michaelis-Menten plot. Furthermore, the stability of the protein-calixarene complex was investigated for different initial pH values and half-life (t(1/2)) values were obtained in the range of 1.96 and 2.64 days. Hemoglobin-calixarene complex present in organic medium was recovered in fresh aqueous solutions at alkaline pH, with a recovery of pseudoperoxidase activity of over 100%. These results strongly suggest that the use of calixarene derivatives is an alternative technique for protein extraction and solubilisation in organic media for biocatalysis.