9 resultados para Voroncova, O. P.: Toponimika Respubliki Marij Èl
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Novel [Ru(eta(6)-p-cymene)(kappa(2)-L)X] and [Ru(eta(6)-p-cymene)(kappa(3)-L)]X center dot nH(2)O complexes (L = bis-, tris-, or tetrakis-pyrazolylborate; X = Cl, N-3, PF6, or CF3SO3) are prepared by treatment of [Ru(eta(6)-p-cymene)Cl-2](2) with poly-(pyrazolyl)borate derivatives [M(L)] (L in general; in detail L = Ph(2)Bp = diphenylbis-(pyrazol-1-yl)borate; L = Tp = hydrotris(pyrazol-1-yl)borate; L = pzTp = tetrakis(pyrazol-1-yl)borate; L = Tp(4Bo) = hydrotris(indazol-1-yl)borate, L = T-p4Bo,T-5Me = (5-methylindazol-1-yl)borate; L = Tp(Bn,4Ph) = hydrotris(3-benzyl-4-phenylpyrazol-1-yl)borate; M = Na, K, or TI) and characterized by analytical and spectral data (IR, ESIMS, H-1 and C-13 NMR). The structures of [Ru(eta(6)-p-cymene)(Ph(2)Bp)Cl] (1) and [Ru(eta(6)-p-cymene)(Tp)Cl] (3) have been established by single-crystal X-ray diffraction analysis. Electrochemical studies allowed comparing the electron-donor characters of Tp and related ligands and estimating the corresponding values of the Lever E-L ligand parameter. The complexes [Ru(eta(6)-p-cymene)-(kappa(2)-L)X] and [Ru(eta(6)-p-cymene)(kappa(3)-L)]X center dot nH(2)O act as catalyst precursors for the diastereoselective nitroaldol reaction of benzaldehyde and nitroethane to the corresponding beta-nitroalkanol (up to 82% yield, at room temperature) with diastereoselectivity toward the formation of the threo isomer.
Resumo:
Novel alternating copolymers comprising biscalix[4]arene-p-phenylene ethynylene and m-phenylene ethynylene units (CALIX-m-PPE) were synthesized using the Sonogashira-Hagihara cross-coupling polymerization. Good isolated yields (60-80%) were achieved for the polymers that show M-n ranging from 1.4 x 10(4) to 5.1 x 10(4) gmol(-1) (gel permeation chromatography analysis), depending on specific polymerization conditions. The structural analysis of CALIX-m-PPE was performed by H-1, C-13, C-13-H-1 heteronuclear single quantum correlation (HSQC), C-13-H-1 heteronuclear multiple bond correlation (HMBC), correlation spectroscopy (COSY), and nuclear overhauser effect spectroscopy (NOESY) in addition to Fourier transform-Infrared spectroscopy and microanalysis allowing its full characterization. Depending on the reaction setup, variable amounts (16-45%) of diyne units were found in polymers although their photophysical properties are essentially the same. It is demonstrated that CALIX-m-PPE does not form ground-or excited-state interchain interactions owing to the highly crowded environment of the main-chain imparted by both calix[4]arene side units which behave as insulators inhibiting main-chain pi-pi staking. It was also found that the luminescent properties of CALIX-m-PPE are markedly different from those of an all-p-linked phenylene ethynylene copolymer (CALIX-p-PPE) previously reported. The unexpected appearance of a low-energy emission band at 426 nm, in addition to the locally excited-state emission (365 nm), together with a quite low fluorescence quantum yield (Phi = 0.02) and a double-exponential decay dynamics led to the formulation of an intramolecular exciplex as the new emissive species.
Resumo:
The hydrotris(pyrazol-1-yl)methane iron(II) complex [FeCl2{eta(3)-HC(pz)(3)}] (Fe, pz = pyrazol-1-yl) immobilized on commercial (MOR) or desilicated (MOR-D) zeolite, catalyses the oxidation of cyclohexane with hydrogen peroxide to cyclohexanol and cyclohexanone, under mild conditions. MOR-D/Fe (desilicated zeolite supported [FeCl2{eta(3)-HC(pz)(3)}] complex) provides an outstanding catalytic activity (TON up to 2.90 x 10(3)) with the concomitant overall yield of 38%, and can be easy recovered and reused. The MOR or MOR-D supported hydrotris(pyrazol-1-yl)methane iron(II) complex (MOR/Fe and MOR-D/Fe, respectively) was characterized by X-ray powder diffraction, ICP-AES, and TEM studies as well as by IR spectroscopy and N-2 adsorption at -196 degrees C. The catalytic operational conditions (e.g., reaction time, type and amount of oxidant, presence of acid and type of solvent) were optimized. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The compounds [mPTA][CoCl4] (1, mPTA = N-methyl-1,3,5-triaza-7-phosphaadamantane cation), [CoCl(H2O)(DION)(2)][BF4] (2, DION = 1,10-phenanthroline-5,6-dione), [Zn(DION)(2)]Cl-2 (3) and [ZnCl(O-PTA=O)(DION)][BF4] (4) were synthesized by reaction of CoCl2 with [mPTA]I or DION and ZnCl2 with DION or 1,3,5-triaza-7-phosphaadamantane-7-oxide (PTA=O) and DION, respectively. All complexes are water soluble and have been characterized by IR, far-IR, H-1, C-13 and P-31{H-1} NMR spectroscopy, ESI-MS, elemental analyses and single-crystal X-ray diffraction structural analysis (for 1). They were screened against the human tumour cell lines HCT116, HepG2 and MCF7. Complexes 2 and 3 exhibit the highest in vitro cytotoxicity and show lower cytotoxic activities in normal human fibroblast cell line than in HCT116 tumour cell line, which demonstrates their slight specificity for this type of tumour cell.
Resumo:
The present study aims to characterize ultrafine particles emitted during gas metal arc welding of mild steel and stainless steel, using different shielding gas mixtures, and to evaluate the effect of metal transfer modes, controlled by both processing parameters and shielding gas composition, on the quantity and morphology of the ultrafine particles. It was found that the amount of emitted ultrafine particles (measured by particle number and alveolar deposited surface area) are clearly dependent from the main welding parameters, namely the current intensity and the heat input of the Welding process. The emission of airborne ultrafine particles increases with the current intensity as fume formation rate does. When comparing the shielding gas mixtures, higher emissions were observed for more oxidizing mixtures, that is, with higher CO2 content, which means that these mixtures originate higher concentrations of ultrafine particles (as measured by number of particles. by cubic centimeter of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more hazardous condition regarding welders exposure.
Resumo:
The morphological and structural modifications induced in sapphire by surface treatment with femtosecond laser radiation were studied. Single-crystal sapphire wafers cut parallel to the (0 1 2) planes were treated with 560 fs, 1030 nm wavelength laser radiation using wide ranges of pulse energy and repetition rate. Self-ordered periodic structures with an average spatial periodicity of similar to 300 nm were observed for fluences slightly higher than the ablation threshold. For higher fluences the interaction was more disruptive and extensive fracture, exfoliation, and ejection of ablation debris occurred. Four types of particles were found in the ablation debris: (a) spherical nanoparticles about 50 nm in diameter; (b) composite particles between 150 and 400 nm in size; (c) rounded resolidified particles about 100-500 nm in size; and (d) angular particles presenting a lamellar structure and deformation twins. The study of those particles by selected area electron diffraction showed that the spherical nanoparticles and the composite particles are amorphous, while the resolidified droplets and the angular particles, present a crystalline a-alumina structure, the same of the original material. Taking into consideration the existing ablation theories, it is proposed that the spherical nanoparticles are directly emitted from the surface in the ablation plume, while resolidified droplets are emitted as a result of the ablation process, in the liquid phase, in the low intensity regime, and by exfoliation, in the high intensity regime. Nanoparticle clusters are formed by nanoparticle coalescence in the cooling ablation plume. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Outlining the best strategies for seismic risk mitigation requires that both benefits and costs of retrofitting are known in advance. The assessment of the vulnerability of building typologies is a first step of a more extensive effort, concerning the analysis of the viability of seismic risk mitigation and taking into account retrofitting costs. The methodology adopted to obtain the seismic vulnerability of some classes of residential buildings existing in mainland Portugal is presented. This methodology is based on a structural analysis of individual buildings belonging to the same typology. An application example is presented to illustrate the methodology. Fragility curves of “boxed” building typology are also presented and broken down into three height classes: low rise, medium-rise and high-rise. These curves are based on average capacity spectra derived from several individual buildings belonging to the same typology.
Resumo:
A number of novel, water-stable redox-active cobalt complexes of the C-functionalized tripodal ligands tris(pyrazolyl)methane XC(pz)(3) (X = HOCH2, CH2OCH2Py or CH2OSO2Me) are reported along with their effects on DNA. The compounds were isolated as air-stable solids and fully characterized by IR and FIR spectroscopies, ESI-MS(+/-), cyclic voltammetry, controlled potential electrolysis, elemental analysis and, in a number of cases, also by single-crystal X-ray diffraction. They showed moderate cytotoxicity in vitro towards HCT116 colorectal carcinoma and HepG2 hepatocellular carcinoma human cancer cell lines. This viability loss is correlated with an increase of tumour cell lines apoptosis. Reactivity studies with biomolecules, such as reducing agents, H2O2, plasmid DNA and UV-visible titrations were also performed to provide tentative insights into the mode of action of the complexes. Incubation of Co(II) complexes with pDNA induced double strand breaks, without requiring the presence of any activator. This pDNA cleavage appears to be mediated by O-centred radical species.
Resumo:
An improved class of Boussinesq systems of an arbitrary order using a wave surface elevation and velocity potential formulation is derived. Dissipative effects and wave generation due to a time-dependent varying seabed are included. Thus, high-order source functions are considered. For the reduction of the system order and maintenance of some dispersive characteristics of the higher-order models, an extra O(mu 2n+2) term (n ??? N) is included in the velocity potential expansion. We introduce a nonlocal continuous/discontinuous Galerkin FEM with inner penalty terms to calculate the numerical solutions of the improved fourth-order models. The discretization of the spatial variables is made using continuous P2 Lagrange elements. A predictor-corrector scheme with an initialization given by an explicit RungeKutta method is also used for the time-variable integration. Moreover, a CFL-type condition is deduced for the linear problem with a constant bathymetry. To demonstrate the applicability of the model, we considered several test cases. Improved stability is achieved.