13 resultados para Volterra type integral equation system
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
A new effective isotropic potential is proposed for the dipolar hard-sphere fluid, on the basis of recent results by others for its angle-averaged radial distribution function. The new effective potential is shown to exhibit oscillations even for moderately high densities and moderately strong dipole moments, which are absent from earlier effective isotropic potentials. The validity and significance of this result are briefly discussed.
Resumo:
Introdução – O efeito de êmbolo é um dos principais problemas relacionados com a eficácia de uma prótese. Uma diminuição do mesmo pode levar a uma marcha mais natural através do aumento da propriocetividade. Objetivos – Verificar se existe diferença de valores do efeito de êmbolo entre vários sistemas de suspensão para próteses transtibiais com a utilização de Liners e testar a aplicação de testes de imagiologia na análise da melhor solução protésica para um determinado indivíduo. Metodologia – Foi obtida uma radiografia da prótese em carga na posição ortostática, mantendo o peso do indivíduo igualmente distribuído pelos dois pés. Seguidamente foi realizada outra radiografia no plano sagital com o joelho com 30° de flexão, com a prótese suspensa e um peso de 5kg aplicado na extremidade distal da mesma durante 30 seg. Através destes dois exames efetuaram-se as medições do êmbolo para cada tipo de sistema de suspensão. Resultados – Dos quatro sistemas estudados apenas três apresentam valores de êmbolo, visto que um dos sistemas não criou suspensão suficiente para suportar o peso colocado na extremidade distal da prótese. Através das medições realizadas nos exames imagiológicos dos três sistemas pudemos encontrar variações de efeito de êmbolo que vão dos 47,91mm aos 72,55mm. Conclusão – Através da realização do estudo imagiológico verificaram-se diferenças a nível do efeito de êmbolo nos vários sistemas de suspensão, provando que esta é uma ferramenta viável na avaliação do mesmo. Também através da análise dos resultados ficou notório que o sistema de suspensão Vacuum Assisted Suspention System (VASS) é o que apresenta menos êmbolo.
Resumo:
An improved class of Boussinesq systems of an arbitrary order using a wave surface elevation and velocity potential formulation is derived. Dissipative effects and wave generation due to a time-dependent varying seabed are included. Thus, high-order source functions are considered. For the reduction of the system order and maintenance of some dispersive characteristics of the higher-order models, an extra O(mu 2n+2) term (n ??? N) is included in the velocity potential expansion. We introduce a nonlocal continuous/discontinuous Galerkin FEM with inner penalty terms to calculate the numerical solutions of the improved fourth-order models. The discretization of the spatial variables is made using continuous P2 Lagrange elements. A predictor-corrector scheme with an initialization given by an explicit RungeKutta method is also used for the time-variable integration. Moreover, a CFL-type condition is deduced for the linear problem with a constant bathymetry. To demonstrate the applicability of the model, we considered several test cases. Improved stability is achieved.
Resumo:
We discuss the operation of a new type of optical sensor (MISCam) based on a metal-insulator-semiconductor (MIS) structure. The operation principle relies on light-induced changes of the band bending and barrier height at the interface between semiconductor and insulator. An image is obtained from the quenching of the ac signal in analogy to the principle of the laser-scanned photodiode (LSP). Lateral resolution depends on the semiconductor material chosen. We have characterised the MIS structures by C-V, I-V, and spectral response measurements testing different types of insulators like a-Si3N4, SiO2, and AlN. The presence of slow interface charges allows for image memory. Colour sensors can be realised by controlling sign and magnitude of the electric fields in the base and the interface region.
Resumo:
The aim of this paper is to formulate an approximation of the US actuarial balance model and apply it to the Spanish public retirement pension system under various scenarios in order to determine a consistent indicator of the system's financial state comparable to those used by the most advanced social security systems. This will enable us to answer the question as to whether there is any justification for reforming the pension system in Spain. This type of actuarial balance uses projections to show future challenges to the financial side of the pension system deriving basically from ageing, the projected increase in longevity and fluctuations in economic activity. If one is compiled periodically it can provide various indicators to help depoliticize the management of the pay-as-you-go system by bringing the planning horizons of politicians and the system itself closer together.
Resumo:
The solubility of ethene in water and in the fermentation medium of Xanthobacter Py(2) was determined with a Ben-Naim-Baer type apparatus. The solubility measurements were carried out in the temperature range of (293.15 to 323.15) K and at atmospheric pressure with a precision of about +/- 0.3 %. The Ostwald coefficients, the mole fractions of the dissolved ethene, at the gas partial pressure of 101.325 kPa, and the Henry coefficients, at the water vapor pressure, were calculated using accurate thermodynamic relations. A comparison between the solubility of ethene in water and in the cultivation medium has shown that this gas is about 2.4 % more soluble in pure water. On the other hand, from the solubility temperature dependence, the Gibbs energy, enthalpy, and entropy changes for the process of transferring the solute from the gaseous phase to the liquid solutions were also determined. Moreover, the perturbed-chain statistical associating fluid theory equation of state (PC-SAFT EOS) model was used for the prediction of the solubility of ethene in water. New parameters, k(ij), are proposed for this system, and it was found that using a ky temperature-dependent PC-SAFT EOS describes more accurately the behavior solubilities of ethene in water at 101.325 kPa, improving the deviations to 1 %.
Resumo:
As coberturas planas são um dos principais elementos construtivos de uma edificação, necessitando por isso de materiais com qualidade e certificados por organismos competentes, bem como de uma conceção e execução minuciosas. Em Portugal, os estudos sobre as anomalias realmente observadas em coberturas planas são ainda bastante reduzidos. Nesse âmbito, o presente trabalho teve como objetivo, efetuar o levantamento e a análise estatística das principais anomalias e causas identificadas em coberturas planas de 75 edifícios, permitindo assim a elaboração de um estudo que possa contribuir para a prevenção dessas anomalias e que indique também as medidas necessárias à reparação e os respetivos custos associados. As anomalias foram analisadas através da observação "in situ" das coberturas o que conduziu ao preenchimento de fichas de obra com os dados recolhidos. Da análise estatística efetuada aos edifícios, verificou-se que as principais anomalias detetadas estão relacionadas com perfurações e fissurações do sistema impermeabilizante, resultantes da falta de conhecimento dos utilizadores. Foi possível verificar erros de execução de remates em pontos singulares da cobertura, por falta de pormenores construtivos desses pontos ou erros de execução por parte do aplicador. Em muitos dos casos estudados, não foi detetada nenhuma anomalia, porque se considerou razoável considerar que o sistema impermeabilizante tenha atingido o fim de vida útil. O custo médio por metro quadrado associado à reabilitação de uma cobertura plana é influenciado principalmente por dois fatores: área e acessibilidade da cobertura. O tipo de anomalia e/ou a sua causa não determinaram o custo por metro quadrado da reparação efetuada, pois esta foi sempre de caracter integral e nunca pontual.
Resumo:
Solubilities of three primary amides, namely, acetanilide, propanamide, and butanamide, in supercritical carbon dioxide were measured at T = (308.2, 313.2, and 323.2) K over the pressure range (9.0 to 40.0) MPa by a flow type apparatus. The solubility behavior of the three solids shows an analogous trend with a crossover region of the respective isotherms between (12 to 14) MPa. The solubility of each amide, at the same temperature and pressure, decreases from propanamide to acetanilide. Pure compound properties required for the modeling were estimated, and the solubilities of the amides were correlated by using the Soave-Redlich-Kwong cubic equation of state with an absolute average relative deviation (AARD) from (1.3 to 6.1) %.
Resumo:
A new integrated mathematical model for the simulation of offshore wind energy conversion system performance is presented in this paper. The mathematical model considers an offshore variable-speed turbine in deep water equipped with a permanent magnet synchronous generator using full-power two-level converter, converting the energy of a variable frequency source in injected energy into the electric network with constant frequency, through a high voltage DC transmission submarine cable. The mathematical model for the drive train is a concentrate two mass model which incorporates the dynamic for the structure and tower due to the need to emulate the effects of the moving surface. Controller strategy considered is a proportional integral one. Also, pulse width modulation using space vector modulation supplemented with sliding mode is used for trigger the transistor of the converter. Finally, a case study is presented to access the system performance. © 2014 IEEE.
Resumo:
A new integrated mathematical model for the simulation of offshore wind energy conversion system performance is presented in this paper. The mathematical model considers an offshore variable-speed turbine in deep water equipped with a permanent magnet synchronous generator using full-power two-level converter, converting the energy of a variable frequency source in injected energy into the electric network with constant frequency, through a high voltage DC transmission submarine cable. The mathematical model for the drive train is a concentrate two mass model which incorporates the dynamic for the structure and tower due to the need to emulate the effects of the moving surface. Controller strategy considered is a proportional integral one. Also, pulse width modulation using space vector modulation supplemented with sliding mode is used for trigger the transistor of the converter. Finally, a case study is presented to access the system performance. © 2014 IEEE.
Resumo:
This paper deals with a hierarchical structure composed by an event-based supervisor in a higher level and two distinct proportional integral (PI) controllers in a lower level. The controllers are applied to a variable speed wind energy conversion system with doubly-fed induction generator, namely, the fuzzy PI control and the fractional-order PI control. The event-based supervisor analyses the operation state of the wind energy conversion system among four possible operational states: park, start-up, generating or brake and sends the operation state to the controllers in the lower level. In start-up state, the controllers only act on electric torque while pitch angle is equal to zero. In generating state, the controllers must act on the pitch angle of the blades in order to maintain the electric power around the nominal value, thus ensuring that the safety conditions required for integration in the electric grid are met. Comparisons between fuzzy PI and fractional-order PI pitch controllers applied to a wind turbine benchmark model are given and simulation results by Matlab/Simulink are shown. From the results regarding the closed loop point of view, fuzzy PI controller allows a smoother response at the expense of larger number of variations of the pitch angle, implying frequent switches between operational states. On the other hand fractional-order PI controller allows an oscillatory response with less control effort, reducing switches between operational states. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes the implementation of a distributed model predictive approach for automatic generation control. Performance results are discussed by comparing classical techniques (based on integral control) with model predictive control solutions (centralized and distributed) for different operational scenarios with two interconnected networks. These scenarios include variable load levels (ranging from a small to a large unbalance generated power to power consumption ratio) and simultaneously variable distance between the interconnected networks systems. For the two networks the paper also examines the impact of load variation in an island context (a network isolated from each other).
Resumo:
This paper is on a simulation for offshore wind systems in deep water under cloud scope. The system is equipped with a permanent magnet synchronous generator and a full-power three-level converter, converting the electric energy at variable frequency in one at constant frequency. The control strategies for the three-level are based on proportional integral controllers. The electric energy is injected through a HVDC transmission submarine cable into the grid. The drive train is modeled by a three-mass model taking into account the resistant stiffness torque, structure and tower in the deep water due to the moving surface elevation. Conclusions are taken on the influence of the moving surface on the energy conversion. © IFIP International Federation for Information Processing 2015.