3 resultados para Vocal loading
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Introdução – A análise da forma ou morfometria de estruturas anatómicas, como o trato vocal, pode ser efetuada a partir de imagens bidimensionais (2D) como de aquisições volumétricas (3D) de ressonância magnética (RM). Esta técnica de imagem tem vindo a ter uma utilização crescente no estudo da produção da fala. Objetivos – Demonstrar como pode ser efetuada a morfometria do trato vocal a partir da imagem por ressonância magnética e ainda apresentar padrões anatómicos normais durante a produção das vogais [i a u] e dois padrões articulatórios patológicos em contexto simulado. Métodos – As imagens consideradas foram recolhidas a partir de aquisições 2D (Turbo Spin-eco) e 3D (Flash Gradiente-Eco) de RM em quatro sujeitos durante a produção das vogais em estudo; adicionalmente procedeu-se à avaliação de duas perturbações articulatórias usando o mesmo protocolo de RM. A morfometria do trato vocal foi extraída com recurso a técnicas manuais (para extração de cinco medidas articulatórias) e automáticas (para determinação de volumes) de processamento e análise de imagem. Resultados – Foi possível analisar todo o trato vocal, incluindo a posição e a forma dos articuladores, tendo por base cinco medidas descritivas do posicionamento destes órgãos durante a produção das vogais. A determinação destas medições permitiu identificar quais as estratégias mais comummente adotadas na produção de cada som, nomeadamente a postura articulatória e a variação de cada medida para cada um dos sujeitos em estudo. No contexto de voz falada intersujeitos, foi notória a variabilidade nos volumes estimados do trato vocal para cada som e, em especial, o aumento do volume do trato vocal na perturbação articulatória de sigmatismo. Conclusão – A imagem por RM é, sem dúvida, uma técnica promissora no estudo da fala, inócua, não-invasiva e que fornece informação fiável da morfometria do trato vocal.
Resumo:
In order to correctly assess the biaxial fatigue material properties one must experimentally test different load conditions and stress levels. With the rise of new in-plane biaxial fatigue testing machines, using smaller and more efficient electrical motors, instead of the conventional hydraulic machines, it is necessary to reduce the specimen size and to ensure that the specimen geometry is appropriated for the load capacity installed. At the present time there are no standard specimen’s geometries and the indications on literature how to design an efficient test specimen are insufficient. The main goal of this paper is to present the methodology on how to obtain an optimal cruciform specimen geometry, with thickness reduction in the gauge area, appropriated for fatigue crack initiation, as a function of the base material sheet thickness used to build the specimen. The geometry is optimized for maximum stress using several parameters, ensuring that in the gauge area the stress is uniform and maximum with two limit phase shift loading conditions. Therefore the fatigue damage will always initiate on the center of the specimen, avoiding failure outside this region. Using the Renard Series of preferred numbers for the base material sheet thickness as a reference, the reaming geometry parameters are optimized using a derivative-free methodology, called direct multi search (DMS) method. The final optimal geometry as a function of the base material sheet thickness is proposed, as a guide line for cruciform specimens design, and as a possible contribution for a future standard on in-plane biaxial fatigue tests. © 2014, Gruppo Italiano Frattura. All rights reserved.
Resumo:
In order to correctly assess the biaxial fatigue material properties one must experimentally test different load conditions and stress levels. With the rise of new in-plane biaxial fatigue testing machines, using smaller and more efficient electrical motors, instead of the conventional hydraulic machines, it is necessary to reduce the specimen size and to ensure that the specimen geometry is appropriate for the load capacity installed. At the present time there are no standard specimen's geometries and the indications on literature how to design an efficient test specimen are insufficient. The main goal of this paper is to present the methodology on how to obtain an optimal cruciform specimen geometry, with thickness reduction in the gauge area, appropriate for fatigue crack initiation, as a function of the base material sheet thickness used to build the specimen. The geometry is optimized for maximum stress using several parameters, ensuring that in the gauge area the stress distributions on the loading directions are uniform and maximum with two limit phase shift loading conditions (delta = 0 degrees and (delta = 180 degrees). Therefore the fatigue damage will always initiate on the center of the specimen, avoiding failure outside this region. Using the Renard Series of preferred numbers for the base material sheet thickness as a reference, the reaming geometry parameters are optimized using a derivative-free methodology, called direct multi search (DMS) method. The final optimal geometry as a function of the base material sheet thickness is proposed, as a guide line for cruciform specimens design, and as a possible contribution for a future standard on in-plane biaxial fatigue tests