4 resultados para Vector-borne disease
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Chronic liver disease (CLD) is most of the time an asymptomatic, progressive, and ultimately potentially fatal disease. In this study, an automatic hierarchical procedure to stage CLD using ultrasound images, laboratory tests, and clinical records are described. The first stage of the proposed method, called clinical based classifier (CBC), discriminates healthy from pathologic conditions. When nonhealthy conditions are detected, the method refines the results in three exclusive pathologies in a hierarchical basis: 1) chronic hepatitis; 2) compensated cirrhosis; and 3) decompensated cirrhosis. The features used as well as the classifiers (Bayes, Parzen, support vector machine, and k-nearest neighbor) are optimally selected for each stage. A large multimodal feature database was specifically built for this study containing 30 chronic hepatitis cases, 34 compensated cirrhosis cases, and 36 decompensated cirrhosis cases, all validated after histopathologic analysis by liver biopsy. The CBC classification scheme outperformed the nonhierachical one against all scheme, achieving an overall accuracy of 98.67% for the normal detector, 87.45% for the chronic hepatitis detector, and 95.71% for the cirrhosis detector.
Resumo:
Chronic Liver Disease is a progressive, most of the time asymptomatic, and potentially fatal disease. In this paper, a semi-automatic procedure to stage this disease is proposed based on ultrasound liver images, clinical and laboratorial data. In the core of the algorithm two classifiers are used: a k nearest neighbor and a Support Vector Machine, with different kernels. The classifiers were trained with the proposed multi-modal feature set and the results obtained were compared with the laboratorial and clinical feature set. The results showed that using ultrasound based features, in association with laboratorial and clinical features, improve the classification accuracy. The support vector machine, polynomial kernel, outperformed the others classifiers in every class studied. For the Normal class we achieved 100% accuracy, for the chronic hepatitis with cirrhosis 73.08%, for compensated cirrhosis 59.26% and for decompensated cirrhosis 91.67%.
Resumo:
In this work the identification and diagnosis of various stages of chronic liver disease is addressed. The classification results of a support vector machine, a decision tree and a k-nearest neighbor classifier are compared. Ultrasound image intensity and textural features are jointly used with clinical and laboratorial data in the staging process. The classifiers training is performed by using a population of 97 patients at six different stages of chronic liver disease and a leave-one-out cross-validation strategy. The best results are obtained using the support vector machine with a radial-basis kernel, with 73.20% of overall accuracy. The good performance of the method is a promising indicator that it can be used, in a non invasive way, to provide reliable information about the chronic liver disease staging.
Resumo:
In this work liver contour is semi-automatically segmented and quantified in order to help the identification and diagnosis of diffuse liver disease. The features extracted from the liver contour are jointly used with clinical and laboratorial data in the staging process. The classification results of a support vector machine, a Bayesian and a k-nearest neighbor classifier are compared. A population of 88 patients at five different stages of diffuse liver disease and a leave-one-out cross-validation strategy are used in the classification process. The best results are obtained using the k-nearest neighbor classifier, with an overall accuracy of 80.68%. The good performance of the proposed method shows a reliable indicator that can improve the information in the staging of diffuse liver disease.