5 resultados para Tumor immunology
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The conjugation of antigens with ligands of pattern recognition receptors (PRR) is emerging as a promising strategy for the modulation of specific immunity. Here, we describe a new Escherichia coli system for the cloning and expression of heterologous antigens in fusion with the OprI lipoprotein, a TLR ligand from the Pseudomonas aeruginosa outer membrane (OM). Analysis of the OprI expressed by this system reveals a triacylated lipid moiety mainly composed by palmitic acid residues. By offering a tight regulation of expression and allowing for antigen purification by metal affinity chromatography, the new system circumvents the major drawbacks of former versions. In addition, the anchoring of OprI to the OM of the host cell is further explored for the production of novel recombinant bacterial cell wall-derived formulations (OM fragments and OM vesicles) with distinct potential for PRR activation. As an example, the African swine fever virus ORF A104R was cloned and the recombinant antigen was obtained in the three formulations. Overall, our results validate a new system suitable for the production of immunogenic formulations that can be used for the development of experimental vaccines and for studies on the modulation of acquired immunity.
Resumo:
Introdução: O cancro retal continua a ser um dos principais problemas de saúde a nível mundial, sendo a toxicidade gastro-intestinal e génito-urinária os efeitos tardios da radioterapia mais reportados. A utilização da Belly-Board para minimizar essa toxicidade, reduzindo o volume de bexiga e intestino delgado irradiados é recomendada. No entanto, o protocolo mais adequado para o volume vesical nestes doentes é ainda tema de controvérsia. Objetivo: Avaliar a influência do volume vesical na dose recebida na bexiga e no PTV, em doentes com tumor de reto, posicionados em decúbito ventral, com belly-board. Materiais e Métodos: 38 doentes com tumor de reto tratados no CHBM, agrupados em dois grupos: o 1º grupo, com 19 doentes que realizaram tratamento com bexiga cheia e o 2º grupo, com 19 doentes que realizaram tratamento com bexiga vazia. Os dados foram obtidos através dos HDV’s e foram comparadas as doses máximas no PTV e a percentagem de volume de bexiga que recebe 50Gy. Foi utilizado o teste estatístico U-Mann Whitney com um nível de significância de 0,05. A hipótese de pesquisa deste estudo propõe que os dois grupos diferem significativamente entre si e a hipótese nula propõe que os dois grupos não diferem significativamente entre si, para ambas as variáveis. Resultados: Não se observaram diferenças estatisticamente significativas entre os grupos no que diz respeito à dose máxima no PTV. No que se refere à percentagem de volume de bexiga que recebe 50Gy verificaram-se diferenças estatisticamente significativas, tendo o grupo de doentes que realizaram tratamento com bexiga cheia apresentado valores mais baixos. Conclusões: Este estudo demonstrou o benefício da utilização do protocolo de bexiga cheia em doentes com tumor de reto tratados com belly-board, na diminuição da percentagem de volume de bexiga que recebe 50Gy.
Resumo:
Dynamical systems modeling tumor growth have been investigated to determine the dynamics between tumor and healthy cells. Recent theoretical investigations indicate that these interactions may lead to different dynamical outcomes, in particular to homoclinic chaos. In the present study, we analyze both topological and dynamical properties of a recently characterized chaotic attractor governing the dynamics of tumor cells interacting with healthy tissue cells and effector cells of the immune system. By using the theory of symbolic dynamics, we first characterize the topological entropy and the parameter space ordering of kneading sequences from one-dimensional iterated maps identified in the dynamics, focusing on the effects of inactivation interactions between both effector and tumor cells. The previous analyses are complemented with the computation of the spectrum of Lyapunov exponents, the fractal dimension and the predictability of the chaotic attractors. Our results show that the inactivation rate of effector cells by the tumor cells has an important effect on the dynamics of the system. The increase of effector cells inactivation involves an inverse Feigenbaum (i.e. period-halving bifurcation) scenario, which results in the stabilization of the dynamics and in an increase of dynamics predictability. Our analyses also reveal that, at low inactivation rates of effector cells, tumor cells undergo strong, chaotic fluctuations, with the dynamics being highly unpredictable. Our findings are discussed in the context of tumor cells potential viability.
Resumo:
Two distinct subsets of γδ T cells that produce interleukin 17 (IL-17) (CD27(-) γδ T cells) or interferon-γ (IFN-γ) (CD27(+) γδ T cells) develop in the mouse thymus, but the molecular determinants of their functional potential in the periphery remain unknown. Here we conducted a genome-wide characterization of the methylation patterns of histone H3, along with analysis of mRNA encoding transcription factors, to identify the regulatory networks of peripheral IFN-γ-producing or IL-17-producing γδ T cell subsets in vivo. We found that CD27(+) γδ T cells were committed to the expression of Ifng but not Il17, whereas CD27(-) γδ T cells displayed permissive chromatin configurations at loci encoding both cytokines and their regulatory transcription factors and differentiated into cells that produced both IL-17 and IFN-γ in a tumor microenvironment.
Resumo:
In this article we provide homotopy solutions of a cancer nonlinear model describing the dynamics of tumor cells in interaction with healthy and effector immune cells. We apply a semi-analytic technique for solving strongly nonlinear systems – the Step Homotopy Analysis Method (SHAM). This algorithm, based on a modification of the standard homotopy analysis method (HAM), allows to obtain a one-parameter family of explicit series solutions. By using the homotopy solutions, we first investigate the dynamical effect of the activation of the effector immune cells in the deterministic dynamics, showing that an increased activation makes the system to enter into chaotic dynamics via a period-doubling bifurcation scenario. Then, by adding demographic stochasticity into the homotopy solutions, we show, as a difference from the deterministic dynamics, that an increased activation of the immune cells facilitates cancer clearance involving tumor cells extinction and healthy cells persistence. Our results highlight the importance of therapies activating the effector immune cells at early stages of cancer progression.