25 resultados para Transformer voltage equations
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.
Resumo:
The purpose of this paper is to present and discuss a general HV topology of the solid-state Marx modulator, for unipolar or bipolar generation connected with a step-up transformer to increase the output voltage applied to a resistive load. Due to the use of an output transformer, discussion about the reset of the transformer is made to guarantee zero average voltage applied to the primary. It is also discussed the transformer magnetizing energy recovering back to the energy storage capacitors. Simulation results for a circuit that generates 100 kV pulses using 1000 V semiconductors are presented and discussed regarding the voltage and current stress on the semiconductors and result obtained.
Resumo:
In this paper we present results on the use of a semiconductor heterostructure based on a-SiC:H as a wavelength-division demultiplexer for the visible light spectrum. The proposed device is composed of two stacked p-i-n photodiodes with intrinsic absorber regions adjusted to short and long wavelength absorption and carrier collection. An optoelectronic characterisation of the device was performed in the visible spectrum. Demonstration of the device functionality for WDM applications was done with three different input channels covering the long, the medium and the short wavelengths in the visible range. The recovery of the input channels is explained using the photocurrent spectral dependence on the applied voltage. An electrical model of the WDM device is proposed and supported by the solution of the respective circuit equations. Short range optical communications constitute the major application field however other applications are foreseen. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The intensive use of semiconductor devices enabled the development of a repetitive high-voltage pulse-generator topology from the dc voltage-multiplier (VM) concept. The proposed circuit is based on an odd VM-type circuit, where a number of dc capacitors share a common connection with different voltage ratings in each one, and the output voltage comes from a single capacitor. Standard VM rectifier and coupling diodes are used for charging the energy-storing capacitors, from an ac power supply, and two additional on/off semiconductors in each stage, to switch from the typical charging VM mode to a pulse mode with the dc energy-storing capacitors connected in series with the load. Results from a 2-kV experimental prototype with three stages, delivering a 10-mu s pulse with a 5-kHz repetition rate into a resistive load, are discussed. Additionally, the proposed circuit is compared against the solid-state Marx generator topology for the same peak input and output voltages.
Resumo:
This paper presents a new generalized solution for DC bus capacitors voltage balancing in back-to-back m level diode-clamped multilevel converters connecting AC networks. The solution is based on the DC bus average power flow and exploits the switching configuration redundancies. The proposed balancing solution is particularized for the back-to-back multilevel structure with m=5 levels. This back-to-back converter is studied working with bidirectional power flow, connecting an induction machine to the power grid.
Resumo:
This paper presents a predictive optimal matrix converter controller for a flywheel energy storage system used as Dynamic Voltage Restorer (DVR). The flywheel energy storage device is based on a steel seamless tube mounted as a vertical axis flywheel to store kinetic energy. The motor/generator is a Permanent Magnet Synchronous Machine driven by the AC-AC Matrix Converter. The matrix control method uses a discrete-time model of the converter system to predict the expected values of the input and output currents for all the 27 possible vectors generated by the matrix converter. An optimal controller minimizes control errors using a weighted cost functional. The flywheel and control process was tested as a DVR to mitigate voltage sags and swells. Simulation results show that the DVR is able to compensate the critical load voltage without delays, voltage undershoots or overshoots, overcoming the input/output coupling of matrix converters.
Resumo:
Implementing monolithic DC-DC converters for low power portable applications with a standard low voltage CMOS technology leads to lower production costs and higher reliability. Moreover, it allows miniaturization by the integration of two units in the same die: the power management unit that regulates the supply voltage for the second unit, a dedicated signal processor, that performs the functions required. This paper presents original techniques that limit spikes in the internal supply voltage on a monolithic DC-DC converter, extending the use of the same technology for both units. These spikes are mainly caused by fast current variations in the path connecting the external power supply to the internal pads of the converter power block. This path includes two parasitic inductances inbuilt in bond wires and in package pins. Although these parasitic inductances present relative low values when compared with the typical external inductances of DC-DC converters, their effects can not be neglected when switching high currents at high switching frequency. The associated overvoltage frequently causes destruction, reliability problems and/or control malfunction. Different spike reduction techniques are presented and compared. The proposed techniques were used in the design of the gate driver of a DC-DC converter included in a power management unit implemented in a standard 0.35 mu m CMOS technology.
Resumo:
A newly developed solid-state repetitive high-voltage (HV) pulse modulator topology created from the mature concept of the d.c. voltage multiplier (VM) is described. The proposed circuit is based in a voltage multiplier type circuit, where a number of d.c. capacitors share a common connection with different voltage rating in each one. Hence, besides the standard VM rectifier and coupling diodes, two solid-state on/off switches are used, in each stage, to switch from the typical charging VM mode to a pulse mode with the d.c. capacitors connected in series with the load. Due to the on/off semiconductor configuration, in half-bridge structures, the maximum voltage blocked by each one is the d.c. capacitor voltage in each stage. A 2 kV prototype is described and the results are compared with PSPICE simulations.
Resumo:
Neste trabalho é efectuado, não só o diagnóstico em regime permanente, mas também o estudo, simulação e análise do comportamento dinâmico da rede eléctrica da ilha de São Vicente em Cabo Verde. Os estudos de estabilidade transitória desempenham um importante papel, tanto no planeamento como na operação dos sistemas de potência. Tais estudos são realizados, em grande parte, através de simulação digital no domínio do tempo, utilizando integração numérica para resolver as equações não-lineares que modelam a dinâmica do sistema e dependem da existência de registos reais de perturbação (ex: osciloperturbografia). O objectivo do trabalho será também verificar a aplicabilidade dos requisitos técnicos que as unidades geradoras devem ter, no que concerne ao controlo de tensão, estabelecidos na futura regulamentação europeia desenvolvida pela ENTSO-E (European Network Transmission System Operator for Electricity). De entre os requisitos analisou-se a capacidade das máquinas existentes suportarem cavas de tensão decorrentes de curto-circuitos trifásicos simétricos, Fault Ride Through, no ponto de ligação à rede. Identificaram-se para o efeito os factores que influenciam a estabilidade desta rede, em regime perturbado nomeadamente: (i) duração do defeito, (ii) caracterização da carga, com e sem a presença do sistema de controlo de tensão (AVR) em unidades de geração síncronas. Na ausência de registos reais sobre o comportamento do sistema, conclui-se que este é sensível à elasticidade das cargas em particular do tipo potência constante, existindo risco de perda de estabilidade, neste caso, para defeitos superiores a 5ms sem AVR. A existência de AVR nesta rede afigura-se como indispensável para garantir estabilidade de tensão sendo contudo necessário proceder a uma correcta parametrização.
Resumo:
Neste trabalho pretende-se estudar, dimensionar e implementar experimentalmente de um sistema de alimentação para transformadores de alta tensão a alta frequência. Este sistema será constituído por dois elementos principais, um rectificador monofásico em ponte totalmente controlado e por um inversor de tensão. Inicialmente realizou-se um estudo sobre as diferentes topologias possíveis para o rectificador considerando diferentes tipos de carga. Realizou-se, também, um estudo sobre o circuito de geração dos impulsos de disparo dos tiristores, executado com base num circuito integrado TCA 785, dimensionou-se os elementos constituintes do circuito de disparo, e de um sistema de controlo da tensão de saída do rectificador. Posteriormente estudou-se o funcionamento do inversor de tensão, definindo-se os modos de operação e dimensionou-se um circuito ressonante tendo em conta os parâmetros construtivos do transformador que se pretende utilizar. Finalmente procedeu-se à implementação prática dos sistemas previamente dimensionados e simulados e à apresentação dos respectivos resultados.
Resumo:
In this paper, we present results on the use of multilayered a-SiC:H heterostructures as a device for wavelength-division demultiplexing of optical signals. These devices are useful in optical communications applications that use the wavelength division multiplexing technique to encode multiple signals into the same transmission medium. The device is composed of two stacked p-i-n photodiodes, both optimized for the selective collection of photo generated carriers. Band gap engineering was used to adjust the photogeneration and recombination rate profiles of the intrinsic absorber regions of each photodiode to short and long wavelength absorption in the visible spectrum. The photocurrent signal using different input optical channels was analyzed at reverse and forward bias and under steady state illumination. A demux algorithm based on the voltage controlled sensitivity of the device was proposed and tested. An electrical model of the WDM device is presented and supported by the solution of the respective circuit equations.
Resumo:
We study a system of two RLC oscillators coupled through a variable mutual inductance. The system is interesting because it exhibits some peculiar features of coupled oscillators: (i) there are two natural frequencies; (ii) in general, the resonant frequencies do not coincide with the natural frequencies; (iii) the resonant frequencies of both oscillators differ; (iv) for certain choices of parameters, there is only one resonant frequency, instead of the two expected.
Resumo:
This paper addresses the voltage droop compensation associated with long pulses generated by solid-stated based high-voltage Marx topologies. In particular a novel design scheme for voltage droop compensation in solid-state based bipolar Marx generators, using low-cost circuitry design and control, is described. The compensation consists of adding one auxiliary PWM stage to the existing Marx stages, without changing the modularity and topology of the circuit, which controls the output voltage and a LC filter that smoothes the voltage droop in both the positive and negative output pulses. Simulation results are presented for 5 stages Marx circuit using 1 kV per stage, with 1 kHz repetition rate and 10% duty cycle.
Resumo:
A DC-DC step-up micro power converter for solar energy harvesting applications is presented. The circuit is based on a switched-capacitorvoltage tripler architecture with MOSFET capacitors, which results in an, area approximately eight times smaller than using MiM capacitors for the 0.131mu m CMOS technology. In order to compensate for the loss of efficiency, due to the larger parasitic capacitances, a charge reutilization scheme is employed. The circuit is self-clocked, using a phase controller designed specifically to work with an amorphous silicon solar cell, in order to obtain themaximum available power from the cell. This will be done by tracking its maximum power point (MPPT) using the fractional open circuit voltage method. Electrical simulations of the circuit, together with an equivalent electrical model of an amorphous silicon solar cell, show that the circuit can deliver apower of 1132 mu W to the load, corresponding to a maximum efficiency of 66.81%.
Resumo:
Multilevel power converters have been introduced as the solution for high-power high-voltage switching applications where they have well-known advantages. Recently, full back-to-back connected multilevel neutral point diode clamped converters (NPC converter) have been used inhigh-voltage direct current (HVDC) transmission systems. Bipolar-connected back-to-back NPC converters have advantages in long-distance HVDCtransmission systems over the full back-to-back connection, but greater difficulty to balance the dc capacitor voltage divider on both sending and receiving end NPC converters. This study shows that power flow control and dc capacitor voltage balancing are feasible using fast optimum-predictive-based controllers in HVDC systems using bipolar back-to-back-connected five-level NPC multilevel converters. For both converter sides, the control strategytakes in account active and reactive power, which establishes ac grid currents in both ends, and guarantees the balancing of dc bus capacitor voltages inboth NPC converters. Additionally, the semiconductor switching frequency is minimised to reduce switching losses. The performance and robustness of the new fast predictive control strategy, and its capability to solve the DC capacitor voltage balancing problem of bipolar-connected back-to-back NPCconverters are evaluated.