10 resultados para Théorème de Bayes
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
A limitada capacidade dos computadores em processar documentos de texto e consequente di culdade de extracção de informação desses documentos deve-se à dificuldade de processamento de informação não-estruturada. De modo a reduzir essa limitação é necessário aumentar a estrutura dos documentos com que os computadores trabalham. Este trabalho propõe um modelo de classificação de documentos através de um processo de refinamento sucessivo da informação. A cada iteração a informação presente no documento é melhor caracterizada através da aplicação de um classi cador apropriado. O processo de classificação recorre a informação estatística, usando o modelo de classificação de Bayes, sobre documentos ou fragmentos de documentos. O processo de classificação também recorre a técnicas para especificação de padrões de texto, usando expressões regulares para extrair informação que exibe um padrão conhecido. A informação obtida é armazenada em XML, que permite a interrogação de colecções de documentos de modo automático (recorrendo a bases de dados de suporte nativo XML). O XML também é usado para transformar a informação original noutros formatos, como por exemplo o HTML. Este formato pode ser usado para sintetizar a informação de modo melhorar a sua apresentação.
Resumo:
O sistema de transportes rodoviário é avaliado habitualmente por quatro parâmetros de desempenho: acessibilidade, mobilidade, economia e ambiente. Face à dimensão do problema que a sinistralidade rodoviária representa actualmente, em termos sociais e económicos, é essencial que a engenharia rodoviária consiga avaliar objectivamente a segurança rodoviária. Mas como medir a "Oferta da Segurança Rodoviária"? É apresentada nesta dissertação uma proposta de abordagem metológica da questão anterior, que assenta num desenvolvimento baseado na Aproximação Empírica de Bayes (AEB), sendo estruturado no pressuposto de vir a ser uma componente a ser integrada num sistema global de monitorização e maximização da segurança rodoviária. Esta abordagem metológica pode vir a ser aplicada com grande sucesso aos procedimentos, de gestão da segurança rodoviária e consequentemente facilitar também, ao nível estratégico, a estabilização das variáveis macroscópicas relevantes para a aferição global do desempenho no âmbito da segurança rodoviária e consequentemente, do sistema rodoviário. A proposta metodológica apresentada foi testada com sucesso através de um estudo de caso no IC1. Este itinerário foi seccionado em 43 troços homogéneos (face ao ambiente rodoviário), nos quais foi analisado o volume de exposição ao risco e a frequência observada de acidentes, para um periódo de 5 anos (2003-2007).
Resumo:
Liver steatosis is a common disease usually associated with social and genetic factors. Early detection and quantification is important since it can evolve to cirrhosis. In this paper, a new computer-aided diagnosis (CAD) system for steatosis classification, in a local and global basis, is presented. Bayes factor is computed from objective ultrasound textural features extracted from the liver parenchyma. The goal is to develop a CAD screening tool, to help in the steatosis detection. Results showed an accuracy of 93.33%, with a sensitivity of 94.59% and specificity of 92.11%, using the Bayes classifier. The proposed CAD system is a suitable graphical display for steatosis classification.
Resumo:
Chronic liver disease (CLD) is most of the time an asymptomatic, progressive, and ultimately potentially fatal disease. In this study, an automatic hierarchical procedure to stage CLD using ultrasound images, laboratory tests, and clinical records are described. The first stage of the proposed method, called clinical based classifier (CBC), discriminates healthy from pathologic conditions. When nonhealthy conditions are detected, the method refines the results in three exclusive pathologies in a hierarchical basis: 1) chronic hepatitis; 2) compensated cirrhosis; and 3) decompensated cirrhosis. The features used as well as the classifiers (Bayes, Parzen, support vector machine, and k-nearest neighbor) are optimally selected for each stage. A large multimodal feature database was specifically built for this study containing 30 chronic hepatitis cases, 34 compensated cirrhosis cases, and 36 decompensated cirrhosis cases, all validated after histopathologic analysis by liver biopsy. The CBC classification scheme outperformed the nonhierachical one against all scheme, achieving an overall accuracy of 98.67% for the normal detector, 87.45% for the chronic hepatitis detector, and 95.71% for the cirrhosis detector.
Resumo:
Liver steatosis is a common disease usually associated with social and genetic factors. Early detection and quantification is important since it can evolve to cirrhosis. Steatosis is usually a diffuse liver disease, since it is globally affected. However, steatosis can also be focal affecting only some foci difficult to discriminate. In both cases, steatosis is detected by laboratorial analysis and visual inspection of ultrasound images of the hepatic parenchyma. Liver biopsy is the most accurate diagnostic method but its invasive nature suggest the use of other non-invasive methods, while visual inspection of the ultrasound images is subjective and prone to error. In this paper a new Computer Aided Diagnosis (CAD) system for steatosis classification and analysis is presented, where the Bayes Factor, obatined from objective intensity and textural features extracted from US images of the liver, is computed in a local or global basis. The main goal is to provide the physician with an application to make it faster and accurate the diagnosis and quantification of steatosis, namely in a screening approach. The results showed an overall accuracy of 93.54% with a sensibility of 95.83% and 85.71% for normal and steatosis class, respectively. The proposed CAD system seemed suitable as a graphical display for steatosis classification and comparison with some of the most recent works in the literature is also presented.
Resumo:
Steatosis, also known as fatty liver, corresponds to an abnormal retention of lipids within the hepatic cells and reflects an impairment of the normal processes of synthesis and elimination of fat. Several causes may lead to this condition, namely obesity, diabetes, or alcoholism. In this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis from ultrasound images. The features are selected in order to catch the same characteristics used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The algorithm, designed in a Bayesian framework, computes two images: i) a despeckled one, containing the anatomic and echogenic information of the liver, and ii) an image containing only the speckle used to compute the textural features. These images are computed from the estimated RF signal generated by the ultrasound probe where the dynamic range compression performed by the equipment is taken into account. A Bayes classifier, trained with data manually classified by expert clinicians and used as ground truth, reaches an overall accuracy of 95% and a 100% of sensitivity. The main novelties of the method are the estimations of the RF and speckle images which make it possible to accurately compute textural features of the liver parenchyma relevant for the diagnosis.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Liver steatosis is mainly a textural abnormality of the hepatic parenchyma due to fat accumulation on the hepatic vesicles. Today, the assessment is subjectively performed by visual inspection. Here a classifier based on features extracted from ultrasound (US) images is described for the automatic diagnostic of this phatology. The proposed algorithm estimates the original ultrasound radio-frequency (RF) envelope signal from which the noiseless anatomic information and the textural information encoded in the speckle noise is extracted. The features characterizing the textural information are the coefficients of the first order autoregressive model that describes the speckle field. A binary Bayesian classifier was implemented and the Bayes factor was calculated. The classification has revealed an overall accuracy of 100%. The Bayes factor could be helpful in the graphical display of the quantitative results for diagnosis purposes.
Resumo:
In this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis, also known as, fatty liver, from ultrasound images. The features, automatically extracted from the ultrasound images used by the classifier, are basically the ones used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The main novelty of the method is the utilization of the speckle noise that corrupts the ultrasound images to compute textural features of the liver parenchyma relevant for the diagnosis. The algorithm uses the Bayesian framework to compute a noiseless image, containing anatomic and echogenic information of the liver and a second image containing only the speckle noise used to compute the textural features. The classification results, with the Bayes classifier using manually classified data as ground truth show that the automatic classifier reaches an accuracy of 95% and a 100% of sensitivity.
Resumo:
Many learning problems require handling high dimensional datasets with a relatively small number of instances. Learning algorithms are thus confronted with the curse of dimensionality, and need to address it in order to be effective. Examples of these types of data include the bag-of-words representation in text classification problems and gene expression data for tumor detection/classification. Usually, among the high number of features characterizing the instances, many may be irrelevant (or even detrimental) for the learning tasks. It is thus clear that there is a need for adequate techniques for feature representation, reduction, and selection, to improve both the classification accuracy and the memory requirements. In this paper, we propose combined unsupervised feature discretization and feature selection techniques, suitable for medium and high-dimensional datasets. The experimental results on several standard datasets, with both sparse and dense features, show the efficiency of the proposed techniques as well as improvements over previous related techniques.