5 resultados para Texas. Good Neighbor Commission
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
This paper studies a portfolio choice problem such that the pricing rule may incorporate transaction costs and the risk measure is coherent and expectation bounded. We will prove the necessity of dealing with pricing rules such that there exists an essentially bounded stochastic discount factor, which must be also bounded from below by a strictly positive value. Otherwise good deals will be available to traders, i.e., depending on the selected risk measure, investors can build portfolios whose (risk, return) will be as close as desired to (−infinity, infinity) or (0, infinity). This pathologic property still holds for vector risk measures (i.e., if we minimize a vector valued function whose components are risk measures). It is worthwhile to point out that essentially bounded stochastic discount factors are not usual in financial literature. In particular, the most famous frictionless, complete and arbitrage free pricing models imply the existence of good deals for every coherent and expectation bounded (scalar or vector) measure of risk, and the incorporation of transaction costs will not guarantee the solution of this caveat.
Resumo:
Recent literature has proved that many classical pricing models (Black and Scholes, Heston, etc.) and risk measures (V aR, CV aR, etc.) may lead to “pathological meaningless situations”, since traders can build sequences of portfolios whose risk leveltends to −infinity and whose expected return tends to +infinity, i.e., (risk = −infinity, return = +infinity). Such a sequence of strategies may be called “good deal”. This paper focuses on the risk measures V aR and CV aR and analyzes this caveat in a discrete time complete pricing model. Under quite general conditions the explicit expression of a good deal is given, and its sensitivity with respect to some possible measurement errors is provided too. We point out that a critical property is the absence of short sales. In such a case we first construct a “shadow riskless asset” (SRA) without short sales and then the good deal is given by borrowing more and more money so as to invest in the SRA. It is also shown that the SRA is interested by itself, even if there are short selling restrictions.
Resumo:
In this work the identification and diagnosis of various stages of chronic liver disease is addressed. The classification results of a support vector machine, a decision tree and a k-nearest neighbor classifier are compared. Ultrasound image intensity and textural features are jointly used with clinical and laboratorial data in the staging process. The classifiers training is performed by using a population of 97 patients at six different stages of chronic liver disease and a leave-one-out cross-validation strategy. The best results are obtained using the support vector machine with a radial-basis kernel, with 73.20% of overall accuracy. The good performance of the method is a promising indicator that it can be used, in a non invasive way, to provide reliable information about the chronic liver disease staging.
Resumo:
In this work liver contour is semi-automatically segmented and quantified in order to help the identification and diagnosis of diffuse liver disease. The features extracted from the liver contour are jointly used with clinical and laboratorial data in the staging process. The classification results of a support vector machine, a Bayesian and a k-nearest neighbor classifier are compared. A population of 88 patients at five different stages of diffuse liver disease and a leave-one-out cross-validation strategy are used in the classification process. The best results are obtained using the k-nearest neighbor classifier, with an overall accuracy of 80.68%. The good performance of the proposed method shows a reliable indicator that can improve the information in the staging of diffuse liver disease.
Resumo:
Purpose: To assess image quality using PGMI (perfect, good, moderate, inadequate) scale in digital mammography examinations acquired in DR systems. Identify the main failures and propose corrective actions. Evaluate the most typical breast density. Methods and Materials: Clinical image quality criteria were evaluated considering mammograms acquired in 13 DR systems and classified according to PGMI scale using the criteria described in European Commission guidelines for radiographers. The breast density was assessed according to ACR recommendations. The data were collected on the acquisition system monitor to reproduce the daily practice of the radiographer. Results: The image quality criteria were evaluated in 3044 images. The criteria were fully achieved in 41% of the images that were classified as P (perfect), 31 % of the images were classified as M (moderate), 20% G (good) and 9% I (inadequate). The main cause of inadequate image quality was absence of all breast tissue in the image, skin folders in the pectoral muscle and in the infra-mammary angle. The higher number of failures occurred in MLO projections (809 out of 1022). The most represented (36%) breast type was type 2 (25-50% glandular tissue). Conclusion: Incorrect radiographic technique was frequently detected suggesting potential training needs and poor communication between the team members (radiographer and radiologists). Further correlations are necessary to identify the main causes for the failures, namely specific education and training in digital mammography and workload.