8 resultados para Temporal Information Extraction
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Animal confinement tends to increase the overall microbial load in the production environment caused by high amounts of feed and organic residuals (manure and wastewater) present in those environments. The number of animais and the handling and management required to work in these settings also contribute to enhance that microbial ioad. Animal housing typically exposes workers to substantial concentrations of bioaerosols, such as fungi and their metabolites. Therefore, agricultural workers, and especially pig and poultry farmers, are at increased risk of occupational respiratory diseases. Exposure to bioaerosols in poultries and swines may vary depending upon the stage of the animals' growth, density, manure management procedures, litter type and used floor coverage, among others. Gathering temporal information about the quantity and the composition of fungal load is necessary to better understand the relationship between these factors and adverse health symptoms of workers. This study aimed to characterize and compare fungal contamination between these two different settings.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
One of the most efficient approaches to generate the side information (SI) in distributed video codecs is through motion compensated frame interpolation where the current frame is estimated based on past and future reference frames. However, this approach leads to significant spatial and temporal variations in the correlation noise between the source at the encoder and the SI at the decoder. In such scenario, it would be useful to design an architecture where the SI can be more robustly generated at the block level, avoiding the creation of SI frame regions with lower correlation, largely responsible for some coding efficiency losses. In this paper, a flexible framework to generate SI at the block level in two modes is presented: while the first mode corresponds to a motion compensated interpolation (MCI) technique, the second mode corresponds to a motion compensated quality enhancement (MCQE) technique where a low quality Intra block sent by the encoder is used to generate the SI by doing motion estimation with the help of the reference frames. The novel MCQE mode can be overall advantageous from the rate-distortion point of view, even if some rate has to be invested in the low quality Intra coding blocks, for blocks where the MCI produces SI with lower correlation. The overall solution is evaluated in terms of RD performance with improvements up to 2 dB, especially for high motion video sequences and long Group of Pictures (GOP) sizes.
Resumo:
This paper analyzes the risk-return trade-off in European equities considering both temporal and cross-sectional dimensions. In our analysis, we introduce not only the market portfolio but also 15 industry portfolios comprising the entire market. Several bivariate GARCH models are estimated to obtain the covariance matrix between excess market returns and the industrial portfolios and the existence of a risk-return trade-off is analyzed through a cross-sectional approach using the information in all portfolios. It is obtained evidence for a positive and significant risk-return trade-off in the European market. This conclusion is robust for different GARCH specifications and is even more evident after controlling for the main financial crisis during the sample period.
Resumo:
This work describes a methodology to extract symbolic rules from trained neural networks. In our approach, patterns on the network are codified using formulas on a Lukasiewicz logic. For this we take advantage of the fact that every connective in this multi-valued logic can be evaluated by a neuron in an artificial network having, by activation function the identity truncated to zero and one. This fact simplifies symbolic rule extraction and allows the easy injection of formulas into a network architecture. We trained this type of neural network using a back-propagation algorithm based on Levenderg-Marquardt algorithm, where in each learning iteration, we restricted the knowledge dissemination in the network structure. This makes the descriptive power of produced neural networks similar to the descriptive power of Lukasiewicz logic language, minimizing the information loss on the translation between connectionist and symbolic structures. To avoid redundance on the generated network, the method simplifies them in a pruning phase, using the "Optimal Brain Surgeon" algorithm. We tested this method on the task of finding the formula used on the generation of a given truth table. For real data tests, we selected the Mushrooms data set, available on the UCI Machine Learning Repository.
Resumo:
Video coding technologies have played a major role in the explosion of large market digital video applications and services. In this context, the very popular MPEG-x and H-26x video coding standards adopted a predictive coding paradigm, where complex encoders exploit the data redundancy and irrelevancy to 'control' much simpler decoders. This codec paradigm fits well applications and services such as digital television and video storage where the decoder complexity is critical, but does not match well the requirements of emerging applications such as visual sensor networks where the encoder complexity is more critical. The Slepian Wolf and Wyner-Ziv theorems brought the possibility to develop the so-called Wyner-Ziv video codecs, following a different coding paradigm where it is the task of the decoder, and not anymore of the encoder, to (fully or partly) exploit the video redundancy. Theoretically, Wyner-Ziv video coding does not incur in any compression performance penalty regarding the more traditional predictive coding paradigm (at least for certain conditions). In the context of Wyner-Ziv video codecs, the so-called side information, which is a decoder estimate of the original frame to code, plays a critical role in the overall compression performance. For this reason, much research effort has been invested in the past decade to develop increasingly more efficient side information creation methods. This paper has the main objective to review and evaluate the available side information methods after proposing a classification taxonomy to guide this review, allowing to achieve more solid conclusions and better identify the next relevant research challenges. After classifying the side information creation methods into four classes, notably guess, try, hint and learn, the review of the most important techniques in each class and the evaluation of some of them leads to the important conclusion that the side information creation methods provide better rate-distortion (RD) performance depending on the amount of temporal correlation in each video sequence. It became also clear that the best available Wyner-Ziv video coding solutions are almost systematically based on the learn approach. The best solutions are already able to systematically outperform the H.264/AVC Intra, and also the H.264/AVC zero-motion standard solutions for specific types of content. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Sticky information monetary models have been used in the macroeconomic literature to explain some of the observed features regarding inflation dynamics. In this paper, we explore the consequences of relaxing the rational expectations assumption usually taken in this type of model; in particular, by considering expectations formed through adaptive learning, it is possible to arrive to results other than the trivial convergence to a fixed point long-term equilibrium. The results involve the possibility of endogenous cyclical motion (periodic and a-periodic), which emerges essentially in scenarios of hyperinflation. In low inflation settings, the introduction of learning implies a less severe impact of monetary shocks that, nevertheless, tend to last for additional time periods relative to the pure perfect foresight setup.
Resumo:
The mycelium and young fruiting bodies of Agaricus blazei were submitted to supercritical CO2 extraction, in a modified commercial flow apparatus, at temperatures from 40 to 80 ºC, pressures up to 600 bar and CO2 flow-rates from 2.0 to 9.0 g.min-1. The best extraction conditions of secondary metabolites, whereby the degree of solubilization (g extract/100 g of fungi) is the highest, was obtained with pure CO2 at 400 bar, 70 ºC and a CO2 flow rate of 5.7g.min-1. The extract in that conditions were analysed by GC-Ms. In order to increase the extraction yield of secondary metabolites, which are mostly present in glycolipid fractions, a polar compound (ethanol) was used as co-solvent in the proportions of 5 and 10 % (mol/mol). The presence of ethanol increased the yield when compared with the extraction with pure CO2. Moreover, a simple model was applied to the supercritical CO2 extraction of secondary metabolites from Agaricus blazei.