12 resultados para Strong Stability
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
In this paper we define and investigate generalized Richards' growth models with strong and weak Allee effects and no Allee effect. We prove the transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, depending on the implicit conditions, which involve the several parameters considered in the models. New classes of functions describing the existence or not of Allee effect are introduced, a new dynamical approach to Richards' populational growth equation is established. These families of generalized Richards' functions are proportional to the right hand side of the generalized Richards' growth models proposed. Subclasses of strong and weak Allee functions and functions with no Allee effect are characterized. The study of their bifurcation structure is presented in detail, this analysis is done based on the configurations of bifurcation curves and symbolic dynamics techniques. Generically, the dynamics of these functions are classified in the following types: extinction, semi-stability, stability, period doubling, chaos, chaotic semistability and essential extinction. We obtain conditions on the parameter plane for the existence of a weak Allee effect region related to the appearance of cusp points. To support our results, we present fold and flip bifurcations curves and numerical simulations of several bifurcation diagrams.
Resumo:
Sliding mode controllers for power converters usually employ hysteresis comparators to directly generate the power semiconductors switching states. This paper presents a new sliding mode modulator based on the direct implementation of the sliding mode stability condition, which for multilevel power converters shows advantages, as branch equalized switching frequencies and less distortion on the ac currents when operating near the rated converter power. The new sliding mode multilevel modulator is used to control a three-phase multilevel converter, operated as a reactive power compensator (STATCOM), implementing the stability condition in a digital signal processing system. The performance of this new sliding mode modulator is compared with a multilevel modulator based on hysteresis comparators. Simulation and experimental results are presented in order to highlight the system operation and control robustness.
Resumo:
Oxide based diluted magnetic semiconductor (DMS) materials have been a subject of increasing interest due to reports of room temperature ferromagnetism in several systems and their potential use in the development of spintronic devices. However, concerns on the stability of the magnetic properties of different DMS systems have been raised. Their magnetic moment is often unstable, vanishing with a characteristic decay time of weeks or months, which precludes the development of real applications. This paper reports on the ferromagnetic properties of two-year-aged Ti1-xCoxO2-δ reduced anatase nanopowders with different Co contents (0.03≤x≤0.10). Aged samples retain rather high values of magnetization, remanence and coercivity which provide strong evidence for a quite preserved long-range ferromagnetic order. In what concern Co segregation, some degree of metastability of the diluted Co doped anatase structure could be inferred in the case of the sample with the higher Co content.
Resumo:
The stability of the color flavor locked phase in the presence of a strong magnetic field is investigated within the phenomenological MIT bag model. It is found that the minimum value of the energy per baryon in a color flavor locked state at vanishing pressure is lower than the corresponding one for unpaired magnetized strange quark matter and, as the magnetic field increases, the energy per baryon decreases. This implies that magnetized color flavor locked matter is more stable and could become the ground state inside neutron stars. The anisotropy of the pressures is discussed. The mass-radius relation for such stars is also studied.
Resumo:
Captopril, an inhibitor of angiotensin converting enzyme (ACE), is used to treat medical conditions like hypertension and heart failure, and it is usually administered in tablet form for adults. Since this dosage form is not recommended for infants and children up to 6 years, hospital pharmacies have to prepare liquid formulations for oral administration of captopril. Traditionally, concentration of captopril used in the formulations is 1mg/ml. The problem is that captopril is prone to oxidation, and its stability in solution is affected by pH, concentration of captopril, the presence of oxygen or metal ions. The influence of different formulation ingredients on the properties of physical and chemical stability of captopril in liquid preparations has been evaluated. Main of the study: to evaluate the stability of captopril for 30 days when formulated in a 1 mg/ml suspension adjuvanted with citric acid.
Resumo:
The stability of the color flavor locked phase in the presence of a strong magnetic field is investigated within the phenomenological MIT bag model, taking into account the variation of the strange quark mass, the baryon density, the magnetic field, as well as the bag and gap parameters. It is found that the minimum value of the energy per baryon in a color flavor locked state at vanishing pressure is lower than the corresponding one for unpaired magnetized strange quark matter and, as the magnetic field increases, the energy per baryon decreases. This implies that magnetized colorflavor locked matter is more stable and could become the ground state inside neutron stars. The mass-radius relation for such stars is also studied.
Resumo:
We show that in two Higgs doublet models at tree-level the potential minimum preserving electric charge and CP symmetries, when it exists, is the global one. Furthermore, we derived a very simple condition, involving only the coefficients of the quartic terms of the potential, that guarantees spontaneous CP breaking. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The main objective of this work was to evaluate the hypothesis that the greater transfer stability leads also to less volume of fumes. Using an Ar + 25%CO2 blend as shielding gas and maintaining constant the average current, wire feed speed and welding speed, bead-on-plate welds were carried out with plain carbon steel solid wire. The welding voltage was scanned to progressively vary the transfer stability. Using two conditions of low stability and one with high stability, fume generation was evaluated by means of the AWS F1.2:2006 standard. The influence of these conditions on fume morphology and composition was also verified. A condition with greater transfer stability does not generate less fume quantity, despite the fact that this condition produces fewer spatters. Other factors such as short-circuit current, arcing time, droplet diameters and arc length are the likely governing factors, but in an interrelated way. Metal transfer stability does not influence either the composition or the size/morphology of fume particulates. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
To study luminescence, reflectance, and color stability of dental composites and ceramics. Materials and Methods: IPS e.max, IPS Classic, Gradia, and Sinfony materials were tested, both unpolished (as-cast) and polished specimens. Coffee, tea, red wine, and distilled water (control) were used as staining drinks. Disk-shaped specimens were soaked in the staining drinks for up to 5 days. Color was measured by a colorimeter. Fluorescence was recorded using a spectrofluorometer, in the front-face geometry. Time-resolved fluorescence spectra were recorded using a laser nanosecond spectrofluorometer. Results: The exposure of the examined dental materials to staining drinks caused changes in color of the composites and ceramics, with the polished specimens exhibiting significantly lower color changes as compared to unpolished specimens. Composites exhibited lower color stability as compared to ceramic materials. Water also caused perceptible color changes in most materials. The materials tested demonstrated significantly different initial luminescence intensities. Upon exposure to staining drinks, luminescence became weaker by up to 40%, dependent on the drink and the material. Time-resolved luminescence spectra exhibited some red shift of the emission band at longer times, with the lifetimes in the range of tens of nanoseconds. Conclusions: Unpolished specimens with a more developed surface have lower color stability. Specimens stored in water develop some changes in their visual appearance. The presently proposed methods are effective in evaluating the luminescence of dental materials. Luminescence needs to be tested in addition to color, as the two characteristics are uncorrelated. It is important to further improve the color and luminescence stability of dental materials.
Resumo:
A new family of "RuCp" (Cp=eta(5)-C5H5) derivatives with bidentate N,O and N,N'-heteroaromatic ligands revealed outstanding cytotoxic properties against several human cell lines namely, A2780, A2780CisR, HT29, MCF7, MDAMB231, and PD. IC50 values were much lower than those found for cisplatin. Crystal structure of compound 4 was determined by X-ray diffraction studies. Density functional theory (DFT) calculations performed for compound 1 showed electronic flow from the ruthenium center to the coordinated bidentate ligand, in agreement with the electrochemical studies and the existence of a metal-to-ligand charge-transfer (MLCT) band evidenced by spectroscopic data.
Resumo:
A dynamical approach to study the behaviour of generalized populational growth models from Bets(p, 2) densities, with strong Allee effect, is presented. The dynamical analysis of the respective unimodal maps is performed using symbolic dynamics techniques. The complexity of the correspondent discrete dynamical systems is measured in terms of topological entropy. Different populational dynamics regimes are obtained when the intrinsic growth rates are modified: extinction, bistability, chaotic semistability and essential extinction.
Resumo:
Motivated by the dark matter and the baryon asymmetry problems, we analyze a complex singlet extension of the Standard Model with a Z(2) symmetry (which provides a dark matter candidate). After a detailed two-loop calculation of the renormalization group equations for the new scalar sector, we study the radiative stability of the model up to a high energy scale (with the constraint that the 126 GeV Higgs boson found at the LHC is in the spectrum) and find it requires the existence of a new scalar state mixing with the Higgs with a mass larger than 140 GeV. This bound is not very sensitive to the cutoff scale as long as the latter is larger than 10(10) GeV. We then include all experimental and observational constraints/measurements from collider data, from dark matter direct detection experiments, and from the Planck satellite and in addition force stability at least up to the grand unified theory scale, to find that the lower bound is raised to about 170 GeV, while the dark matter particle must be heavier than about 50 GeV.