62 resultados para Stored energy friction welding

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Friction stir welding (FSW) is now well established as a welding process capable of joining some different types of metallic materials, as it was (1) found to be a reliable and economical way of producing high quality welds, and (2) considered a "clean" welding process that does not involve fusion of metal, as is the case with other traditional welding processes. The aim of this study was to determine whether the emission of particles during FSW in the nanorange of the most commonly used aluminum (Al) alloys, AA 5083 and AA 6082, originated from the Al alloy itself due to friction of the welding tool against the item that was being welded. Another goal was to measure Al alloys in the alveolar deposited surface area during FSW. Nanoparticles dimensions were predominantly in the 40- and 70-nm range. This study demonstrated that microparticles were also emitted during FSW but due to tool wear. However, the biological relevance and toxic manifestations of these microparticles remain to be determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas [TIG], metal active gas [MAG] of carbon steel, and friction stir welding [FSW] of aluminum) in terms of deposited area in pulmonary alveolar tract using a nanoparticle surface area monitor (NSAM) analyzer. The obtained results showed the dependence of process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and MAG. However, all tested processes resulted in significant concentrations of ultrafine particles being deposited in humans lungs of exposed workers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As it is well known, competitive electricity markets require new computing tools for generation companies to enhance the management of its resources. The economic value of the water stored in a power system reservoir is crucial information for enhancing the management of the reservoirs. This paper proposes a practical deterministic approach for computing the short-term economic value of the water stored in a power system reservoir, emphasizing the need to considerer water stored as a scarce resource with a short-term economic value. The paper addresses a problem concerning reservoirs with small storage capacities, i.e., the reservoirs considered as head-sensitivity. More precisely, the respective hydro plant is head-dependent and a pure linear approach is unable to capture such consideration. The paper presents a case study supported by the proposed practical deterministic approach and applied on a real multi-reservoir power system with three cascaded reservoirs, considering as input data forecasts for the electric energy price and for the natural inflow into the reservoirs over the schedule time horizon. The paper presents various water schedules due to different final stored water volume conditions on the reservoirs. Also, it presents the respective economic value of the water for the reservoirs at different stored water volume conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a micro power light energy harvesting system for indoor environments. Light energy is collected by amorphous silicon photovoltaic (a-Si:H PV) cells, processed by a switched capacitor (SC) voltage doubler circuit with maximum power point tracking (MPPT), and finally stored in a large capacitor. The MPPT fractional open circuit voltage (V-OC) technique is implemented by an asynchronous state machine (ASM) that creates and dynamically adjusts the clock frequency of the step-up SC circuit, matching the input impedance of the SC circuit to the maximum power point condition of the PV cells. The ASM has a separate local power supply to make it robust against load variations. In order to reduce the area occupied by the SC circuit, while maintaining an acceptable efficiency value, the SC circuit uses MOSFET capacitors with a charge sharing scheme for the bottom plate parasitic capacitors. The circuit occupies an area of 0.31 mm(2) in a 130 nm CMOS technology. The system was designed in order to work under realistic indoor light intensities. Experimental results show that the proposed system, using PV cells with an area of 14 cm(2), is capable of starting-up from a 0 V condition, with an irradiance of only 0.32 W/m(2). After starting-up, the system requires an irradiance of only 0.18 W/m(2) (18 mu W/cm(2)) to remain operating. The ASM circuit can operate correctly using a local power supply voltage of 453 mV, dissipating only 0.085 mu W. These values are, to the best of the authors' knowledge, the lowest reported in the literature. The maximum efficiency of the SC converter is 70.3 % for an input power of 48 mu W, which is comparable with reported values from circuits operating at similar power levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas [TIG], metal active gas [MAG] of carbon steel, and friction stir welding [FSW] of aluminum) in terms of deposited area in pulmonary alveolar tract using a nanoparticle surface area monitor (NSAM) analyzer. The obtained results showed the dependence of process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and MAG. However, all tested processes resulted in significant concentrations of ultrafine particles being deposited in humans lungs of exposed workers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis to obtain the Master Degree in Electronics and Telecommunications Engineering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a predictive optimal matrix converter controller for a flywheel energy storage system used as Dynamic Voltage Restorer (DVR). The flywheel energy storage device is based on a steel seamless tube mounted as a vertical axis flywheel to store kinetic energy. The motor/generator is a Permanent Magnet Synchronous Machine driven by the AC-AC Matrix Converter. The matrix control method uses a discrete-time model of the converter system to predict the expected values of the input and output currents for all the 27 possible vectors generated by the matrix converter. An optimal controller minimizes control errors using a weighted cost functional. The flywheel and control process was tested as a DVR to mitigate voltage sags and swells. Simulation results show that the DVR is able to compensate the critical load voltage without delays, voltage undershoots or overshoots, overcoming the input/output coupling of matrix converters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We characterize the elastic contribution to the surface free energy of a nematic liquid crystal in the presence of a sawtooth substrate. Our findings are based on numerical minimization of the Landau-de Gennes model and analytical calculations on the Frank-Oseen theory. The nucleation of disclination lines (characterized by non-half-integer winding numbers) in the wedges and apexes of the substrate induces a leading order proportional to q ln q to the elastic contribution to the surface free-energy density, with q being the wave number associated with the substrate periodicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents new integrated model for variable-speed wind energy conversion systems, considering a more accurate dynamic of the wind turbine, rotor, generator, power converter and filter. Pulse width modulation by space vector modulation associated with sliding mode is used for controlling the power converters. Also, power factor control is introduced at the output of the power converters. Comprehensive performance simulation studies are carried out with matrix, two-level and multilevel power converter topologies in order to adequately assert the system performance. Conclusions are duly drawn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introdução – Os componentes protésicos têm um papel fundamental na eficiência energética da marcha dos indivíduos amputados. Esta é uma área de conhecimento ainda em desenvolvimento, onde a investigação desempenha um papel central. Objectivos – Comparar e analisar o efeito de dois joelhos protésicos, 3R34, monocêntrico modular, de fricção constante, com auxiliar de extensão incorporado (A) e 3R92, monocêntrico modular, com travão de fricção e controlo pneumático da fase de balanço (B) no consumo energético e eficiência da marcha. Metodologia – Um indivíduo do sexo masculino de 27 anos, com amputação transfemural longa, foi sujeito a um protocolo submáximo de avaliação da resposta ao exercício em passadeira rolante (H/P/Cosmos(R) Mercury), através de um sistema de análise de gases breath‑by‑breath (Cosmed Quark PFT Ergo). Foi efetuado o mesmo protocolo com intervalo de dois dias, primeiro utilizando o joelho A e depois o B. As variáveis analisadas foram o consumo de O2 (VO2), o equivalente metabólico (MET) e a eficiência energética da marcha (Quociente de VO2 esperado de um individuo saudável e o VO2 do individuo em estudo). O esforço percecionado foi medido com a escala RPE de Borg. Resultados – O consumo energético com o joelho A (24,2 ml O2/kg/min; 6,9 MET) foi inferior ao obtido com o joelho B (28,68 ml O2/kg/min; 8,2 MET). A eficiência energética da marcha foi mais elevada para o joelho A (43%) do que para o joelho B (39%). Conclusão – A utilização do joelho A na prótese do indivíduo em estudo resulta numa marcha de menor consumo energético e maior eficiência. No entanto, este valor poderá estar influenciado pelo curto período de adaptação ao joelho B, sendo necessários mais estudos para confirmar os resultados do estudo e a influência deste fator. ABSTRACT - Background – Prosthetic components have a crucial role in the energy efficiency of amputee’s gait. This is an area of knowledge still in development, where research plays a central role. Objective – The purpose of this case study is to compare the impact in energy consumption of two prosthetic knees, titanium single‑axis constant friction knee joint with internal extension assist, 3R34 (A) and a single‑axis pneumatic swing phase control, 3R92 (B). Methodology – The participant was a transtibial amputee, male, with 27 years old, with no other clinical or functional impairments. To measure the energy expenditure a submaximal treadmill (H/P/Cosmos(R) Mercury) exercise stress test combined with a breath‑by‑breath analysis system (Cosmed Quark PFT Ergo) was used. The same test was applied to both knees, separated by two days. The analyzed variables were O2 consumption (VO2), metabolic equivalent (MET) and gait efficiency (VO2 ratio expected from a healthy individual and the studied individual). A rate of perceived exertion (Borg’s Scale) was used. Results – The results were favorable to knee A (24.2 ml O2/kg/min; 6.9 MET, 43% efficiency) compared with knee B (28.68 ml O2/kg/min; 8.2 MET, 39% efficiency). Conclusion – In this case, a less energy consumption gait corresponds to the prosthesis with knee A. These values may be influenced by the short adaptation period with knee B, so it’s necessary to perform more studies to confirm the previous results and to understand the truly impact of correct adaptation factor to the best prosthetics components for different patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new integrated model for the simulation of wind energy systems. The proposed model is more realistic and accurate, considering a variable-speed wind turbine, two-mass rotor, permanent magnet synchronous generator (PMSG), different power converter topologies, and filters. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with PMSG/full-power converter topology, based on fractional-order controllers. Comprehensive simulation studies are carried out with matrix and multilevel power converter topologies, in order to adequately assert the system performance in what regards the quality of the energy injected into the electric grid. Finally, conclusions are duly drawn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study focuses on the analysis of pressure surge damping in single pipeline systems generated by a fast change of flow, conditions. A dimensionless form of pressurised transient flow equations was developed. presenting the main advantage of being independent of the system characteristics. In lack of flow velocity profiles. the unsteady friction in turbulent regimes is analysed based on two new empirical corrective-coefficients associated with local and convective acceleration terms. A new, surge damping approach is also presented taking into account the pressure peak time variation. The observed attenuation effect in the pressure wave for high deformable pipe materials can be described by a combination of the non-elastic behaviour of the pipe-wall with steady and unsteady friction effects. Several simulations and experimental tests have been carried out. in order to analyse the dynamic response of single pipelines with different characteristics, such as pipe materials. diameters. thickness. lengths and transient conditions.