13 resultados para Stainless steel 316 L

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho foi desenvolvido no âmbito de um projecto europeu intitulado: “Operational demonstration of innovative and sustainable nitrate elimination in stainless steel pickling by higher power biological denitrification technique” Projecto RESP-CT-2007-00047, tendo em vista o desenvolvimento de membranas para o tratamento de efluente resultante da decapagem do aço inox. Numa fase inicial foram desenvolvidas membranas compostas assimétricas pelo método de polimerização interfacial. Estas membranas foram produzidas utilizando uma membrana comercial de suporte em polietersulfona e os filmes selectivos de poliamiada foram formados por reacção entre 1,3,5-tri(clorocarboni)benzeno (TMC) e várias dinaminas: piperazina (PIP), N-(2-aminoetil)-piperazina (EAP), 1,4-bis(3-aminopropil)-piperazina (DAPP), 6-metil-1,3,5 triazina-2,4 diamina (MTC), Isoforodiamina (IPD) e Dietilenetriamina (DET). A elaboração de membranas de TFC (thin film composite) tinha como objectivo a retenção de sais do efluente resultante da decapagem do aço inox. No entanto, chegou-se a conclusão de que o principal problema do efluente não era a retenção dos sais, mas sim a retenção da matéria orgânica. Assim, já não era necessa´ria a produção de membranas compostas, mas apenas uma membrana suporte simples de microfiltração. Numa segunda fase procedeu-se a preparação da membrana suporte pelo método da inversão de fase, tendo-se testado vários tipos de polímeros: PVC (polyvinyl chloride), PEI (Polyetherimide) e um polímero termoplástico geral. A membrana seleccionada foi a de PEI, com base na sua permeabilidade à água destilada e ao efluente resultante das águas residuais da decapagem do aço inox. Todas as membranas elaboradas durante a realização deste trabalho foram testadas na célula de Berghof a uma pressão de 4bar e com agitação. O principal prâmetro estudado foi a permeabilidade da membrana.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Co-deposition of nickel and cobalt was carried out on austenitic stainless steel (AISI 304) substrates by imposing a square waveform current in the cathodic region. The innovative procedure applied in this work allows creating a stable, fully developed, and open porous three-dimensional (3D) dendritic structure, which can be used as electrode for redox supercapacitors. This study investigates in detail the influence of the applied current density on the morphology, mass, and chemical composition of the deposited Ni-Co films and the resulting 3D porous network dendritic structure. The morphology and the physicochemical composition were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (W). The electrochemical behavior of the materials was evaluated by cyclic voltammetry (CV). The results highlight the mechanism involved in the coelectrodeposition process and how the lower limit current density tailors the film composition and morphology, as well as its electrochemical activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Co-deposition of nickel and cobalt was carried out on austenitic stainless steel (AISI 304) substrates by imposing a square waveform current in the cathodic region. The innovative procedure applied in this work allows creating a stable, fully developed, and open porous three-dimensional (3D) dendritic structure, which can be used as electrode for redox supercapacitors. This study investigates in detail the influence of the applied current density on the morphology, mass, and chemical composition of the deposited Ni-Co films and the resulting 3D porous network dendritic structure. The morphology and the physicochemical composition were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (W). The electrochemical behavior of the materials was evaluated by cyclic voltammetry (CV). The results highlight the mechanism involved in the coelectrodeposition process and how the lower limit current density tailors the film composition and morphology, as well as its electrochemical activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Passive films were grown in potentiodynamic mode, by cyclic voltammetry on AISI 316 and AISI 304 stainless steels. The composition of these films was investigated by X-ray photoelectron spectroscopy (XPS). The electrochemical behaviour and the chemical composition of the passive films formed by cyclic voltammetry were compared to those of films grown under natural conditions (by immersion at open circuit potential, OCP) in alkaline solutions simulating concrete. The study included the effect of pH of the electrolyte and the effect of the presence of chloride ions. The XPS results revealed important changes in the passive film composition, which becomes enriched in chromium and depleted in magnetite as the pH decreases. On the other hand, the presence of chlorides promotes a more oxidised passive layer. The XPS results also showed relevant differences on the composition of the oxide layers for the films formed under cyclic voltammetry and/or under OCP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study aims to characterize ultrafine particles emitted during gas metal arc welding of mild steel and stainless steel, using different shielding gas mixtures, and to evaluate the effect of metal transfer modes, controlled by both processing parameters and shielding gas composition, on the quantity and morphology of the ultrafine particles. It was found that the amount of emitted ultrafine particles (measured by particle number and alveolar deposited surface area) are clearly dependent from the main welding parameters, namely the current intensity and the heat input of the Welding process. The emission of airborne ultrafine particles increases with the current intensity as fume formation rate does. When comparing the shielding gas mixtures, higher emissions were observed for more oxidizing mixtures, that is, with higher CO2 content, which means that these mixtures originate higher concentrations of ultrafine particles (as measured by number of particles. by cubic centimeter of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more hazardous condition regarding welders exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica Ramo de processos químicos

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper iron (Cu-Fe) 3D porous foams for supercapacitor electrodes were electrodeposited in the cathodic regime, on stainless steel current collectors, using hydrogen bubbling dynamic template. The foams were prepared at different current densities and deposition times. The foams were submitted to thermal conditioning at temperatures of 150 and 250 degrees C. The morphology, composition and structure of the formed films were studied by SEM, EDS and XRD, respectively. The electrochemical behaviour was studied by cyclic voltammetry, electrochemical impedance spectroscopy and chronopotentiometry. The morphology of the 3D Cu-Fe foams is sensitive to the electrodeposition current and time. The increase of the current density produces a denser, larger and more ramified dendritic structure. Thermal conditioning at high temperature induces a coarser grain structure and the formation of copper oxides, which affect the electrochemical behaviour. The electrochemical response reveals the presence of various redox peaks assigned to the oxidation and reduction of Cu and Fe oxides and hydroxides in the foams. The specific capacitance of the 3D Cu Fe foams was significantly enhanced by thermal conditioning at 150 degrees C. The highest specific capacitance values attained 297 Fg(-1) which are much above the ones typically observed for single Cu or Fe Oxides and hydroxides. These values highlight a synergistic behaviour resulting from the combination of Cu and Fe in the form of nanostructured metallic foams. Moreover, the capacitance retention observed in an 8000 charge/discharge cycling test was above 66%, stating the good performance of these materials and its enhanced electrochemical response as supercapacitor negative electrodes. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 70Co-30Ni dendritic alloy was produced on stainless steel by pulse electrodeposition in the cathodic domain, and oxidized by potential cycling. X-ray diffraction (XRD) identified the presence of two phases and scanning electron microscopy (SEM) evidenced an open 3D highly branched dendritic morphology. After potential cycling in 1 M KOH, SEM and X-ray photoelectron spectroscopy (XPS) revealed, respectively, the presence of thin nanoplates, composed of Co and Ni oxi-hydroxides and hydroxides over the original dendritic film. Cyclic voltammetry tests showd the presence of redox peaks assigned to the oxidation and reduction of Ni and Co centres in the surface film. Charge/discharge measurements revealed capacity values of 121 mAh g(1) at 1 mA cm(2). The capacity retention under 8000 cycles was above 70%, stating the good reversibility of these redox materials and its suitability to be used as charge storage electrodes. Electrochemical impedance spectroscopy (EIS) spectra, taken under different applied bias, showed that the capacitance increased when the electrode was fully oxidized and decreased when the electrode was reduced, reflecting different states-of-charge of the electrode. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the use of a Control Banding Tool to assess and further control of exposure of nanoparticles emitted during welding operations. The tool was applied to Metal Active Gas (MAG) arc welding of mild and stainless steel, providing semi-quantitative data on the process, so that protection measures could be derived, e.g. exhaust gas ventilation by hoods, local ventilation devices and containment measures. This tool is quite useful to compare and evaluate the characteristics of arc welding procedures so that more eco-friendly processes could be preferred over the more potentially noxious ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemically-reduced graphene oxide (Er-GO) and cobalt oxides (CoOx) were co-electrodeposited by cyclic voltammetry, from an electrolyte containing graphene oxide and cobalt nitrate, directly onto a stainless steel substrate to produce composite electrodes presenting high charge storage capacity. The electrochemical response of the composite films was optimized by studying the parameters applied during the electrodeposition process, namely the number of cycles, scan rate and ratio between GO/Co(NO3)(2) concentrations in the electrolyte. It is shown that, if the appropriate conditions are selected, it is possible to produced binder-free composite electrodes with improved electrochemical properties using a low-cost, facile and scalable technique. The optimized Er-GO/CoOx developed in this work exhibits a specific capacitance of 608 F g(-1) at a current density of 1 A g(-1) and increased reversibility when compared to single CoOx. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-dimensional (3D) nickel-copper (Ni-Cu) nanostructured foams were prepared by galvanostatic electrodeposition, on stainless steel substrates, using the dynamic hydrogen bubble template. These foams were tested as electrodes for the hydrogen evolution reaction (HER) in 8 M KOH solutions. Polarisation curves were obtained for the Ni-Cu foams and for a solid Ni electrode, in the 25-85 degrees C temperature range, and the main kinetic parameters were determined. It was observed that the 3D foams have higher catalytic activity than pure Ni. HER activation energies for the Ni-Cu foams were lower (34-36 kJ mol(-1)) than those calculated for the Ni electrode (62 kJ mol(-1)). The foams also presented high stability for HER, which makes them potentially attractive cathode materials for application in industrial alkaline electrolysers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, electrochemically reduced-graphene oxide/cobalt oxide composites for charge storage electrodes were prepared by a one-step pulsed electrodeposition route on stainless steel current collectors and after that submitted to a thermal treatment at 200 degrees C. A detailed physico-chemical characterization was performed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Raman spectroscopy. The electrochemical response of the composite electrodes was studied by cyclic voltammetry and charge-discharge curves and related to the morphological and phase composition changes induced by the thermal treatment. The results revealed that the composites were promising materials for charge storage electrodes for application in redox supercapacitors, attaining specific capacitances around 430 F g(-1) at 1 A g(-1) and presenting long-term cycling stability. (C) 2016 Elsevier B.V. All rights reserved.