5 resultados para Square Root Model

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study of transient dynamical phenomena near bifurcation thresholds has attracted the interest of many researchers due to the relevance of bifurcations in different physical or biological systems. In the context of saddle-node bifurcations, where two or more fixed points collide annihilating each other, it is known that the dynamics can suffer the so-called delayed transition. This phenomenon emerges when the system spends a lot of time before reaching the remaining stable equilibrium, found after the bifurcation, because of the presence of a saddle-remnant in phase space. Some works have analytically tackled this phenomenon, especially in time-continuous dynamical systems, showing that the time delay, tau, scales according to an inverse square-root power law, tau similar to (mu-mu (c) )(-1/2), as the bifurcation parameter mu, is driven further away from its critical value, mu (c) . In this work, we first characterize analytically this scaling law using complex variable techniques for a family of one-dimensional maps, called the normal form for the saddle-node bifurcation. We then apply our general analytic results to a single-species ecological model with harvesting given by a unimodal map, characterizing the delayed transition and the scaling law arising due to the constant of harvesting. For both analyzed systems, we show that the numerical results are in perfect agreement with the analytical solutions we are providing. The procedure presented in this work can be used to characterize the scaling laws of one-dimensional discrete dynamical systems with saddle-node bifurcations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a single precision floating point arithmetic unit with support for multiplication, addition, fused multiply-add, reciprocal, square-root and inverse squareroot with high-performance and low resource usage. The design uses a piecewise 2nd order polynomial approximation to implement reciprocal, square-root and inverse square-root. The unit can be configured with any number of operations and is capable to calculate any function with a throughput of one operation per cycle. The floatingpoint multiplier of the unit is also used to implement the polynomial approximation and the fused multiply-add operation. We have compared our implementation with other state-of-the-art proposals, including the Xilinx Core-Gen operators, and conclude that the approach has a high relative performance/area efficiency. © 2014 Technical University of Munich (TUM).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Density-dependent effects, both positive or negative, can have an important impact on the population dynamics of species by modifying their population per-capita growth rates. An important type of such density-dependent factors is given by the so-called Allee effects, widely studied in theoretical and field population biology. In this study, we analyze two discrete single population models with overcompensating density-dependence and Allee effects due to predator saturation and mating limitation using symbolic dynamics theory. We focus on the scenarios of persistence and bistability, in which the species dynamics can be chaotic. For the chaotic regimes, we compute the topological entropy as well as the Lyapunov exponent under ecological key parameters and different initial conditions. We also provide co-dimension two bifurcation diagrams for both systems computing the periods of the orbits, also characterizing the period-ordering routes toward the boundary crisis responsible for species extinction via transient chaos. Our results show that the topological entropy increases as we approach to the parametric regions involving transient chaos, being maximum when the full shift R(L)(infinity) occurs, and the system enters into the essential extinction regime. Finally, we characterize analytically, using a complex variable approach, and numerically the inverse square-root scaling law arising in the vicinity of a saddle-node bifurcation responsible for the extinction scenario in the two studied models. The results are discussed in the context of species fragility under differential Allee effects. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A correlation and predictive scheme for the viscosity and self-diffusivity of liquid dialkyl adipates is presented. The scheme is based on the kinetic theory for dense hard-sphere fluids, applied to the van der Waals model of a liquid to predict the transport properties. A "universal" curve for a dimensionless viscosity of dialkyl adipates was obtained using recently published experimental viscosity and density data of compressed liquid dimethyl (DMA), dipropyl (DPA), and dibutyl (DBA) adipates. The experimental data are described by the correlation scheme with a root-mean-square deviation of +/- 0.34 %. The parameters describing the temperature dependence of the characteristic volume, V-0, and the roughness parameter, R-eta, for each adipate are well correlated with one single molecular parameter. Recently published experimental self-diffusion coefficients of the same set of liquid dialkyl adipates at atmospheric pressure were correlated using the characteristic volumes obtained from the viscosity data. The roughness factors, R-D, are well correlated with the same single molecular parameter found for viscosity. The root-mean-square deviation of the data from the correlation is less than 1.07 %. Tests are presented in order to assess the capability of the correlation scheme to estimate the viscosity of compressed liquid diethyl adipate (DEA) in a range of temperatures and pressures by comparison with literature data and of its self-diffusivity at atmospheric pressure in a range of temperatures. It is noteworthy that no data for DEA were used to build the correlation scheme. The deviations encountered between predicted and experimental data for the viscosity and self-diffusivity do not exceed 2.0 % and 2.2 %, respectively, which are commensurate with the estimated experimental measurement uncertainty, in both cases.