39 resultados para Spherical projection.
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Objective: Summarize all relevant findings in published literature regarding the potential dose reduction related to image quality using Sinogram-Affirmed Iterative Reconstruction (SAFIRE) compared to Filtered Back Projection (FBP). Background: Computed Tomography (CT) is one of the most used radiographic modalities in clinical practice providing high spatial and contrast resolution. However it also delivers a relatively high radiation dose to the patient. Reconstructing raw-data using Iterative Reconstruction (IR) algorithms has the potential to iteratively reduce image noise while maintaining or improving image quality of low dose standard FBP reconstructions. Nevertheless, long reconstruction times made IR unpractical for clinical use until recently. Siemens Medical developed a new IR algorithm called SAFIRE, which uses up to 5 different strength levels, and poses an alternative to the conventional IR with a significant reconstruction time reduction. Methods: MEDLINE, ScienceDirect and CINAHL databases were used for gathering literature. Eleven articles were included in this review (from 2012 to July 2014). Discussion: This narrative review summarizes the results of eleven articles (using studies on both patients and phantoms) and describes SAFIRE strengths for noise reduction in low dose acquisitions while providing acceptable image quality. Conclusion: Even though the results differ slightly, the literature gathered for this review suggests that the dose in current CT protocols can be reduced at least 50% while maintaining or improving image quality. There is however a lack of literature concerning paediatric population (with increased radiation sensitivity). Further studies should also assess the impact of SAFIRE on diagnostic accuracy.
Resumo:
Background: Computed tomography (CT) is one of the most used modalities for diagnostics in paediatric populations, which is a concern as it also delivers a high patient dose. Research has focused on developing computer algorithms that provide better image quality at lower dose. The iterative reconstruction algorithm Sinogram-Affirmed Iterative Reconstruction (SAFIRE) was introduced as a new technique that reduces noise to increase image quality. Purpose: The aim of this study is to compare SAFIRE with the current gold standard, Filtered Back Projection (FBP), and assess whether SAFIRE alone permits a reduction in dose while maintaining image quality in paediatric head CT. Methods: Images were collected using a paediatric head phantom using a SIEMENS SOMATOM PERSPECTIVE 128 modulated acquisition. 54 images were reconstructed using FBP and 5 different strengths of SAFIRE. Objective measures of image quality were determined by measuring SNR and CNR. Visual measures of image quality were determined by 17 observers with different radiographic experiences. Images were randomized and displayed using 2AFC; observers scored the images answering 5 questions using a Likert scale. Results: At different dose levels, SAFIRE significantly increased SNR (up to 54%) in the acquired images compared to FBP at 80kVp (5.2-8.4), 110kVp (8.2-12.3), 130kVp (8.8-13.1). Visual image quality was higher with increasing SAFIRE strength. The highest image quality was scored with SAFIRE level 3 and higher. Conclusion: The SAFIRE algorithm is suitable for image noise reduction in paediatric head CT. Our data demonstrates that SAFIRE enhances SNR while reducing noise with a possible reduction of dose of 68%.
Resumo:
We calculate the equilibrium thermodynamic properties, percolation threshold, and cluster distribution functions for a model of associating colloids, which consists of hard spherical particles having on their surfaces three short-ranged attractive sites (sticky spots) of two different types, A and B. The thermodynamic properties are calculated using Wertheim's perturbation theory of associating fluids. This also allows us to find the onset of self-assembly, which can be quantified by the maxima of the specific heat at constant volume. The percolation threshold is derived, under the no-loop assumption, for the correlated bond model: In all cases it is two percolated phases that become identical at a critical point, when one exists. Finally, the cluster size distributions are calculated by mapping the model onto an effective model, characterized by a-state-dependent-functionality (f) over bar and unique bonding probability (p) over bar. The mapping is based on the asymptotic limit of the cluster distributions functions of the generic model and the effective parameters are defined through the requirement that the equilibrium cluster distributions of the true and effective models have the same number-averaged and weight-averaged sizes at all densities and temperatures. We also study the model numerically in the case where BB interactions are missing. In this limit, AB bonds either provide branching between A-chains (Y-junctions) if epsilon(AB)/epsilon(AA) is small, or drive the formation of a hyperbranched polymer if epsilon(AB)/epsilon(AA) is large. We find that the theoretical predictions describe quite accurately the numerical data, especially in the region where Y-junctions are present. There is fairly good agreement between theoretical and numerical results both for the thermodynamic (number of bonds and phase coexistence) and the connectivity properties of the model (cluster size distributions and percolation locus).
Resumo:
We generalize the Flory-Stockmayer theory of percolation to a model of associating (patchy) colloids, which consists of hard spherical particles, having on their surfaces f short-ranged-attractive sites of m different types. These sites can form bonds between particles and thus promote self-assembly. It is shown that the percolation threshold is given in terms of the eigenvalues of a m x m matrix, which describes the recursive relations for the number of bonded particles on the ith level of a cluster with no loops; percolation occurs when the largest of these eigenvalues equals unity. Expressions for the probability that a particle is not bonded to the giant cluster, for the average cluster size and the average size of a cluster to which a randomly chosen particle belongs, are also derived. Explicit results for these quantities are computed for the case f = 3 and m = 2. We show how these structural properties are related to the thermodynamics of the associating system by regarding bond formation as a (equilibrium) chemical reaction. This solution of the percolation problem, combined with Wertheim's thermodynamic first-order perturbation theory, allows the investigation of the interplay between phase behavior and cluster formation for general models of patchy colloids.
Resumo:
During the last two decades screen-film (SF) systems have been replaced by digital X-ray systems. The advent of digital technologies brought a number of digital solutions based on different detector and readout technologies. Improvements in technology allowed the development of new digital technologies for projection radiography such as computed radiography (CR) and digital radiography (DR). The large number of scientific papers concerning digital X-ray systems that have been published over the last 25 years indicates the relevance of these technologies in healthcare. There are important differences among different detector technologies that may affect system performance and image quality for diagnostic purposes. Radiographers are expected to have an effective understanding of digital X-ray technologies and a high level of knowledge and awareness concerning the capabilities of these systems. Patient safety and reliable diagnostic information are intrinsically linked to these factors. In this review article - which is the first of two parts - a global overview of the digital radiography systems (both CR and DR) currently available for clinical practice is provided.
Resumo:
Digital X-ray detector technologies provide several advantages when compared with screen-film (SF) systems: better diagnostic quality of the radiographic image, increased dose efficiency, better dynamic range and possible reduction of radiation exposure to the patient. The transition from traditional SF systems to digital technology-based systems highlights the importance of the discussion around technical factors such as image acquisition, themanagement of patient dose and diagnostic image quality. Radiographers should be aware of these aspects concerning their clinical practice regarding the advantages and limitations of digital detectors. Newdigital technologies require an up-to-date of scientific knowledge concerning their use in projection radiography. This is the second of a two-part review article focused on a technical overview of digital radiography detectors. This article provides a discussion about the issues related to the image acquisition requirements and advantages of digital technologies, the management of patient dose and the diagnostic image quality.
Resumo:
Este estudo tem por objectivos determinar a Dose Glandular Média - Mean Glandular Dose (MGD) - em 3 sistemas de Mamografia e comparar os valores obtidos com os referenciais internacionais. O estudo foi realizado num sistema analógico de Écran-Película (EP) e em dois sistemas de imagem digital (CR e DR). Foi efectuado o cálculo da Entrance Surface Air Kerma (ESAK) e da MGD em três equipamentos a partir de uma amostra de dados referentes a 30 mulheres assintomáticas, com idades compreendidas entre os 40 e 64 anos. Em cada equipamento objecto de análise, foram recolhidos os dados referentes a 10 mulheres. Foram consideradas as projecções crânio-caudal (CC) e oblíqua médio-lateral (MLO). A análise de resultados revelou que o valor de MGD varia quando se compara os três sistemas. Nas incidências CC os valores de MGD obtidos foram de 1,54 mGy (EP), 1,78 mGy (CR) e 0,82 mGy (DR). Nas incidências MLO o valor de MGD foi de 1,53 mGy no sistema EP, de 1,78 mGy no CR e 0,87 mGy no sistema DR. Constata-se que o valor de MGD na incidência de CC é inferior ao valor de MGD na incidência MLO, excepto para o sistema EP. Verifica-se também que o sistema EP apresenta maior variabilidade nos dados de MGD comparativamente com os restantes sistemas. O sistema DR é o que apresenta a menor variabilidade de valores MGD e também valores de MGD mais baixos. Comparando os resultados deste estudo com as referências internacionais, verifica-se que a MGD se encontra abaixo do limite de 2 mGy recomendado. ABSTRACT - This study aims to estimate the Mean Glandular Dose (MGD) associated with three different mammographic systems and compare the results with recommended international reference values. The systems included in the study included a conventional Screen-Film (SF) system and two digital mammography systems (CR and DR). Entrance Surface Air Kerma (ESAK) and MGD associated with each equipment were calculated. A sample of 30 healthy women (age ranging from 40 to 64 years old) undertaking screening mammography was considered in this study. The mammographic exam includes two projections, cranio-caudal (CC) and medio-lateral oblique (MLO). The MGD results obtained for CC projection were 1,54 mGy (SF), 1,78 mGy (CR) and 0,82 mGy (DR). MGD values for the MLO projection were 1,53 mGy (SF), 1,78 mGy (CR) and 0,87 mGy (DR). Results show that MGD value is slightly lower in the CC projection than in MLO, except for the SF system (1,54 mGy; 1,53 mGy). In addition the MGD for the SF system varied more than that associated with the digital systems. The DR system allows a narrow variation of MGD values and also lower MGD values. Comparing this study results with the international references we concluded that MGD values are below the 2 mGy recommended value for the three systems evaluated.
Resumo:
Hoje em dia, há cada vez mais informação audiovisual e as transmissões ou ficheiros multimédia podem ser partilhadas com facilidade e eficiência. No entanto, a adulteração de conteúdos vídeo, como informação financeira, notícias ou sessões de videoconferência utilizadas num tribunal, pode ter graves consequências devido à importância desse tipo de informação. Surge então, a necessidade de assegurar a autenticidade e a integridade da informação audiovisual. Nesta dissertação é proposto um sistema de autenticação de vídeo H.264/Advanced Video Coding (AVC), denominado Autenticação de Fluxos utilizando Projecções Aleatórias (AFPA), cujos procedimentos de autenticação, são realizados ao nível de cada imagem do vídeo. Este esquema permite um tipo de autenticação mais flexível, pois permite definir um limite máximo de modificações entre duas imagens. Para efectuar autenticação é utilizada uma nova técnica de autenticação de imagens, que combina a utilização de projecções aleatórias com um mecanismo de correcção de erros nos dados. Assim é possível autenticar cada imagem do vídeo, com um conjunto reduzido de bits de paridade da respectiva projecção aleatória. Como a informação de vídeo é tipicamente, transportada por protocolos não fiáveis pode sofrer perdas de pacotes. De forma a reduzir o efeito das perdas de pacotes, na qualidade do vídeo e na taxa de autenticação, é utilizada Unequal Error Protection (UEP). Para validação e comparação dos resultados implementou-se um sistema clássico que autentica fluxos de vídeo de forma típica, ou seja, recorrendo a assinaturas digitais e códigos de hash. Ambos os esquemas foram avaliados, relativamente ao overhead introduzido e da taxa de autenticação. Os resultados mostram que o sistema AFPA, utilizando um vídeo com qualidade elevada, reduz o overhead de autenticação em quatro vezes relativamente ao esquema que utiliza assinaturas digitais e códigos de hash.
Resumo:
We have calculated the equilibrium shape of the axially symmetric Plateau border along which a spherical bubble contacts a flat wall, by analytically integrating Laplace's equation in the presence of gravity, in the limit of small Plateau border sizes. This method has the advantage that it provides closed-form expressions for the positions and orientations of the Plateau border surfaces. Results are in very good overall agreement with those obtained from a numerical solution procedure, and are consistent with experimental data. In particular we find that the effect of gravity on Plateau border shape is relatively small for typical bubble sizes, leading to a widening of the Plateau border for sessile bubbles and to a narrowing for pendant bubbles. The contact angle of the bubble is found to depend even more weakly on gravity. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Advances in digital technology led to the development of digital x-ray detectors that are currently in wide use for projection radiography, including Computed Radiography (CR) and Digital Radiography (DR). Digital Imaging Systems for Plain Radiography addresses the current technological methods available to medical imaging professionals to ensure the optimization of the radiological process concerning image quality and reduction of patient exposure. Based on extensive research by the authors and reference to the current literature, the book addresses how exposure parameters influence the diagnostic quality in digital systems, what the current acceptable radiation doses are for useful diagnostic images, and at what level the dose could be reduced to maintain an accurate diagnosis. The book is a valuable resource for both students learning the field and for imaging professionals to apply to their own practice while performing radiological examinations with digital systems.
Resumo:
This chapter addresses technical issues concerning digital technologies. Radiological equipment and technique are briefly introduced together with a discussion about requirements and advantages of digital technologies. Digital technologies offer several advantages when compared to conventional analogical systems, or screen–film (SF) systems. While in clinical practice the practitioners should be aware of technical factors such as image acquisition, management of patient dose, and diagnostic image quality. Thus, digital technologies require an up-to-date scientific knowledge concerning their use in projection radiography. In this chapter, technical considerations concerning digital technologies are provided.
Resumo:
We investigate whether the liquid-vapour phase transition of strongly dipolar fluids can be understood using a model of patchy colloids. These consist of hard spherical particles with three short-ranged attractive sites (patches) on their surfaces. Two of the patches are of type A and one is of type B. Patches A on a particle may bond either to a patch A or to a patch B on another particle. Formation of an AA (AB) bond lowers the energy by epsilon AA (epsilon AB). In the limit [image omitted], this patchy model exhibits condensation driven by AB-bonds (Y-junctions). Y-junctions are also present in low-density, strongly dipolar fluids, and have been conjectured to play a key role in determining their critical behaviour. We map the dipolar Yukawa hard-sphere (DYHS) fluid onto this 2A + 1B patchy model by requiring that the latter reproduce the correct DYHS critical point as a function of the isotropic interaction strength epsilon Y. This is achieved for sensible values of epsilon AB and the bond volumes. Results for the internal energy and the particle coordination number are in qualitative agreement with simulations of DYHSs. Finally, by taking the limit [image omitted], we arrive at a new estimate for the critical point of the dipolar hard-sphere fluid, which agrees with extrapolations from simulation.
Resumo:
Mestrado em Contabilidade e Gestão das Instituições Financeiras
Resumo:
Myocardial Perfusion Gated Single Photon Emission Tomography (Gated-SPET) imaging is used for the combined evaluation of myocardial perfusion and left ventricular (LV) function. But standard protocols of the Gated-SPECT studies require long acquisition times for each study. It is therefore important to reduce as much as possible the total duration of image acquisition. However, it is known that this reduction leads to decrease on counts statistics per projection and raises doubts about the validity of the functional parameters determined by Gated-SPECT. Considering that, it’s difficult to carry out this analysis in real patients. For ethical, logistical and economical matters, simulated studies could be required for this analysis. Objective: Evaluate the influence of the total number of counts acquired from myocardium, in the calculation of myocardial functional parameters (LVEF – left ventricular ejection fraction, EDV – end-diastolic volume, ESV – end-sistolic volume) using routine software procedures.
Resumo:
The population growth of a Staphylococcus aureus culture, an active colloidal system of spherical cells, was followed by rheological measurements, under steady-state and oscillatory shear flows. We observed a rich viscoelastic behavior as a consequence of the bacteria activity, namely, of their multiplication and density-dependent aggregation properties. In the early stages of growth (lag and exponential phases), the viscosity increases by about a factor of 20, presenting several drops and full recoveries. This allows us to evoke the existence of a percolation phenomenon. Remarkably, as the bacteria reach their late phase of development, in which the population stabilizes, the viscosity returns close to its initial value. Most probably, this is caused by a change in the bacteria physiological activity and in particular, by the decrease of their adhesion properties. The viscous and elastic moduli exhibit power-law behaviors compatible with the "soft glassy materials" model, whose exponents are dependent on the bacteria growth stage. DOI: 10.1103/PhysRevE.87.030701.