6 resultados para Spatial Mixture Models
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Anaemia has a significant impact on child development and mortality and is a severe public health problem in most countries in sub-Saharan Africa. Nutritional and infectious causes of anaemia are geographically variable and anaemia maps based on information on the major aetiologies of anaemia are important for identifying communities most in need and the relative contribution of major causes. We investigated the consistency between ecological and individual-level approaches to anaemia mapping, by building spatial anaemia models for children aged ≤15 years using different modeling approaches. We aimed to a) quantify the role of malnutrition, malaria, Schistosoma haematobium and soil-transmitted helminths (STH) for anaemia endemicity in children aged ≤15 years and b) develop a high resolution predictive risk map of anaemia for the municipality of Dande in Northern Angola. We used parasitological survey data on children aged ≤15 years to build Bayesian geostatistical models of malaria (PfPR≤15), S. haematobium, Ascaris lumbricoides and Trichuris trichiura and predict small-scale spatial variation in these infections. The predictions and their associated uncertainty were used as inputs for a model of anemia prevalence to predict small-scale spatial variation of anaemia. Stunting, PfPR≤15, and S. haematobium infections were significantly associated with anaemia risk. An estimated 12.5%, 15.6%, and 9.8%, of anaemia cases could be averted by treating malnutrition, malaria, S. haematobium, respectively. Spatial clusters of high risk of anaemia (>86%) were identified. Using an individual-level approach to anaemia mapping at a small spatial scale, we found that anaemia in children aged ≤15 years is highly heterogeneous and that malnutrition and parasitic infections are important contributors to the spatial variation in anemia risk. The results presented in this study can help inform the integration of the current provincial malaria control program with ancillary micronutrient supplementation and control of neglected tropical diseases, such as urogenital schistosomiasis and STH infection.
Resumo:
Anaemia is known to have an impact on child development and mortality and is a severe public health problem in most countries in sub-Saharan Africa. We investigated the consistency between ecological and individual-level approaches to anaemia mapping by building spatial anaemia models for children aged ≤15 years using different modelling approaches. We aimed to (i) quantify the role of malnutrition, malaria, Schistosoma haematobium and soil-transmitted helminths (STHs) in anaemia endemicity; and (ii) develop a high resolution predictive risk map of anaemia for the municipality of Dande in northern Angola. We used parasitological survey data for children aged ≤15 years to build Bayesian geostatistical models of malaria (PfPR≤15), S. haematobium, Ascaris lumbricoides and Trichuris trichiura and predict small-scale spatial variations in these infections. Malnutrition, PfPR≤15, and S. haematobium infections were significantly associated with anaemia risk. An estimated 12.5%, 15.6% and 9.8% of anaemia cases could be averted by treating malnutrition, malaria and S. haematobium, respectively. Spatial clusters of high risk of anaemia (>86%) were identified. Using an individual-level approach to anaemia mapping at a small spatial scale, we found that anaemia in children aged ≤15 years is highly heterogeneous and that malnutrition and parasitic infections are important contributors to the spatial variation in anaemia risk. The results presented in this study can help inform the integration of the current provincial malaria control programme with ancillary micronutrient supplementation and control of neglected tropical diseases such as urogenital schistosomiasis and STH infections.
Resumo:
In cluster analysis, it can be useful to interpret the partition built from the data in the light of external categorical variables which are not directly involved to cluster the data. An approach is proposed in the model-based clustering context to select a number of clusters which both fits the data well and takes advantage of the potential illustrative ability of the external variables. This approach makes use of the integrated joint likelihood of the data and the partitions at hand, namely the model-based partition and the partitions associated to the external variables. It is noteworthy that each mixture model is fitted by the maximum likelihood methodology to the data, excluding the external variables which are used to select a relevant mixture model only. Numerical experiments illustrate the promising behaviour of the derived criterion. © 2014 Springer-Verlag Berlin Heidelberg.
Resumo:
In cluster analysis, it can be useful to interpret the partition built from the data in the light of external categorical variables which are not directly involved to cluster the data. An approach is proposed in the model-based clustering context to select a number of clusters which both fits the data well and takes advantage of the potential illustrative ability of the external variables. This approach makes use of the integrated joint likelihood of the data and the partitions at hand, namely the model-based partition and the partitions associated to the external variables. It is noteworthy that each mixture model is fitted by the maximum likelihood methodology to the data, excluding the external variables which are used to select a relevant mixture model only. Numerical experiments illustrate the promising behaviour of the derived criterion.
Resumo:
In this work a new probabilistic and dynamical approach to an extension of the Gompertz law is proposed. A generalized family of probability density functions, designated by Beta* (p, q), which is proportional to the right hand side of the Tsoularis-Wallace model, is studied. In particular, for p = 2, the investigation is extended to the extreme value models of Weibull and Frechet type. These models, described by differential equations, are proportional to the hyper-Gompertz growth model. It is proved that the Beta* (2, q) densities are a power of betas mixture, and that its dynamics are determined by a non-linear coupling of probabilities. The dynamical analysis is performed using techniques of symbolic dynamics and the system complexity is measured using topological entropy. Generally, the natural history of a malignant tumour is reflected through bifurcation diagrams, in which are identified regions of regression, stability, bifurcation, chaos and terminus.
Resumo:
A new data set of daily gridded observations of precipitation, computed from over 400 stations in Portugal, is used to assess the performance of 12 regional climate models at 25 km resolution, from the ENSEMBLES set, all forced by ERA-40 boundary conditions, for the 1961-2000 period. Standard point error statistics, calculated from grid point and basin aggregated data, and precipitation related climate indices are used to analyze the performance of the different models in representing the main spatial and temporal features of the regional climate, and its extreme events. As a whole, the ENSEMBLES models are found to achieve a good representation of those features, with good spatial correlations with observations. There is a small but relevant negative bias in precipitation, especially in the driest months, leading to systematic errors in related climate indices. The underprediction of precipitation occurs in most percentiles, although this deficiency is partially corrected at the basin level. Interestingly, some of the conclusions concerning the performance of the models are different of what has been found for the contiguous territory of Spain; in particular, ENSEMBLES models appear too dry over Portugal and too wet over Spain. Finally, models behave quite differently in the simulation of some important aspects of local climate, from the mean climatology to high precipitation regimes in localized mountain ranges and in the subsequent drier regions.