1 resultado para Sorting Signals
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Academic Research Repository at Institute of Developing Economies (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- Adam Mickiewicz University Repository (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (10)
- Archive of European Integration (7)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (48)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (53)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (95)
- CentAUR: Central Archive University of Reading - UK (55)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (32)
- Cochin University of Science & Technology (CUSAT), India (9)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (3)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (1)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (8)
- Duke University (11)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (7)
- Indian Institute of Science - Bangalore - Índia (72)
- Instituto Politécnico do Porto, Portugal (1)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (4)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (92)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (7)
- Publishing Network for Geoscientific & Environmental Data (11)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (70)
- Queensland University of Technology - ePrints Archive (86)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (34)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (4)
- School of Medicine, Washington University, United States (5)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (30)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Université de Lausanne, Switzerland (4)
- Université de Montréal, Canada (4)
- University of Connecticut - USA (4)
- University of Michigan (33)
- University of Queensland eSpace - Australia (40)
- University of Washington (1)
- WestminsterResearch - UK (5)
Resumo:
We propose a low complexity technique to generate amplitude correlated time-series with Nakagami-m distribution and phase correlated Gaussian-distributed time-series, which is useful in the simulation of ionospheric scintillation effects during the transmission of GNSS signals. The method requires only the knowledge of parameters S4 (scintillation index) and σΦ (phase standard deviation) besides the definition of models for the amplitude and phase power spectra. The Zhang algorithm is used to produce Nakagami-distributed signals from a set of Gaussian autoregressive processes.